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Abstract
Liouville integrable systems, which have bi-Hamiltonian representation of the
Gel’fand–Zakharevich type, are considered. Bi-presymplectic representation
of one-Casimir bi-Hamiltonian chains and weakly bi-presymplectic
representation of multi-Casimir bi-Hamiltonian chains are constructed. The
reduction procedure for Poisson and presymplectic structures is presented.

PACS number: 02.30.Ik

1. Introduction

The bi-Poisson formulation of finite dimensional integrable Hamiltonian systems has been
systematically developed over the last two decades (see [1] and the literature quoted therein).
It has been found that most of the known Liouville integrable finite dimensional systems
have more then one Hamiltonian representation. Moreover, in the majority of known cases,
both Poisson structures of a given flow are degenerated. Perhaps this is the reason why such
an important property of integrable systems was discovered so late, relative to the age of
classical mechanics. For such systems, related bi-Poisson (bi-Hamiltonian) commuting vector
fields belong to one or more bi-Hamiltonian chains starting and terminating with Casimirs of
respective Poisson structures. An important aspect of such a construction is its relation to the
recently developed geometric separability theory [2–10]. Actually, the necessary condition for
the existence of separation coordinates is the reducibility of one of the Poisson structures onto
a symplectic leaf of the other one. An important fact is that the whole procedure of variables
separation is almost algorithmic.

On the other hand, it is well known from classical mechanics, that if the Poisson structure
is nondegenerate, i.e. if the rank of the Poisson tensor is equal to the dimension of a phase
space, then the phase space becomes a symplectic manifold with a symplectic structure being
just the inverse of the Poisson structure. In such a case there exists an alternative (dual)
description of Hamiltonian vector fields in the language of symplectic geometry. So, a natural
question arises of whether one can construct such a dual picture in the degenerated case, when
there is no natural inverse of the Poisson tensor [11].
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A positive answer to this question is presented in the next sections of the paper. A
dual presymplectic picture will be constructed for bi-Hamiltonian chains with one Casimir
as well as with many Casimirs. The paper is organized as follows. In this section we
recall some elementary facts from the Poisson and presymplectic geometry. In section 2
we introduce notions of dual pairs, compatible pairs and Poisson pairs and investigate some
of their properties. In section 3, applying the results of the previous section, we construct
a presymplectic representation of Poisson chains. In section 4 the deformation reduction
procedure for Poisson and presymplectic chains is presented. Such a reduction is crucial for
separability of underlying dynamical systems. Finally, in section 5, we illustrate the presented
theory by a nontrivial example.

Given a manifold M of dimM = m, a Poisson operator � of corank r on M is a bivector
� ∈ �2(M) with vanishing Schouten bracket:

[�,�]S = 0, (1)

whose kernel is spanned by exact 1-forms

ker � = Sp{dci}i=1,...,r .

The symbol d denotes the operator of exterior derivative. In a given coordinate system
(x1, . . . , xm) on M we have

� =
m∑

i<j

�ij ∂

∂xi
∧ ∂

∂xj
,

while the Poisson property (1) takes the form∑
l

(�lj ∂l�
ik + �il∂l�

kj + �kl∂l�
ji) = 0, ∂i := ∂

∂xi
.

A function c : M → R is called the Casimir function of the Poisson operator � if � dc = 0.
A linear combination �λ = �1 − λ�0 (λ ∈ R) of two Poisson operators �0 and �1 is called
a Poisson pencil if the operator �λ is Poisson for any value of the parameter λ. In this case
we say that �0 and �1 are compatible. A vector field XF related to a function F through the
relation

XF = � dF (2)

is called a Hamiltonian vector field with respect to the Poisson operator �. It is also important
to note that if X is any vector field on M that is Hamiltonian with respect to �, then LX� = 0,
where LX is the Lie-derivative operator in the direction X.

Further, a presymplectic operator � on M defines a 2-form that is closed, i.e. d� = 0,

degenerated in general. In the coordinate system (x1, . . . , xm) on M we can always represent
� as

� =
m∑

i<j

�ij dxi ∧ dxj ,

where the closeness condition takes the form

∂i�jk + ∂k�ij + ∂j�ki = 0.

Moreover, the kernel of any presymplectic form is always an integrable distribution. A vector
field XF related to a function F by the relation

�XF = dF (3)
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is called the inverse Hamiltonian vector field with respect to the presymplectic operator �.
Generally, if � is a closed 2-form and X is an arbitrary vector field then

LX� = d(�X). (4)

Hence, if �(Y) = 0 for some vector field Y on M then LY � = 0. Note that contrary to the
Poisson case, a linear combination of two presymplectic operators is always presymplectic.

Poisson tensor �, considered as the mapping � : T ∗M → TM, induces a Lie bracket
on the space C∞(M) of all smooth real-valued functions on M

{·,·}� : C∞(M) × C∞(M) → C∞(M), {F,G}� def= 〈dF,� dG〉 = �(dF, dG), (5)

(where 〈·,·〉 is the dual map between TM and T ∗M) which is skew-symmetric and satisfies
Jacobi identity. It is called a Poisson bracket.

When a Poisson operator � is nondegenerate, one can always define its inverse � = �−1,

called a symplectic operator, and then equations (2) and (3) are equivalent. Moreover, any
Hamiltonian vector field with respect to � is simultaneously the inverse Hamiltonian with
respect to � and XF = XF . Finally, the symplectic operator � defines the same Poisson
bracket as the related Poisson operator �

{F,G}� := �(XF ,XG) = 〈�XF ,XG〉 = 〈dF,� dG〉 = {F,G}�. (6)

The equivalence is destroyed in the case of degeneracy. First, one cannot define � as the
inverse of �. Second, for degenerated � equation (2) is valid for an arbitrary function F (as
in the nondegenerate case), while for degenerated � and an arbitrary F there is no such vector
field XF that (3) is fulfilled. It means that equation (3) is valid only for a particular class of
functions (contrary to the nondegenerate case). Finally it is not clear how to define a Poisson
bracket with respect to a presymplectic form.

2. Dual Poisson–presymplectic pairs and compatible structures

In this section we introduce basic objects important for the theory, further develop and them
investigate some of their properties. As the concept of dual pairs was introduced and developed
for the first time in our previous paper [12], here we only recall their main properties. Let
us remark that the concept of dual Poisson–presymplectic pairs [12], which we are going to
apply to bi-Poisson chains, is a useful particular realization of the concept of Poisson brackets
on presymplectic manifolds, presented by Dubrovin et al [11].

Consider a smooth manifold M of dimension m equipped with a pair of antisymmetric
operators �,�.

Definition 1. A pair of antisymmetric tensor fields (�,�) such that � : T ∗M → TM,
i.e. � is twice contravariant, and � : TM → T ∗M, i.e. � is twice covariant, is called a
dual pair if there exist r 1-forms αi, i = 1, . . . , r , and r linearly independent vector fields
Zi, i = 1, . . . , r , such that the following conditions are satisfied:

1. αi(Zj ) = δij for all i, j = 1, . . . , r .
2. The kernel of � is spanned by all αi, ker(�) = Sp{αi}i=1,...,r .
3. The kernel of � is spanned by all the vector fields Zi , ker(�) = Sp{Zi}i=1,...,r .
4. The following partition of unity holds on TM

I = �� +
r∑

i=1

Zi ⊗ αi (7)

where ⊗ denotes the tensor product.
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Note that the partition of unity (7) on T ∗M takes the form

I = �� +
r∑

i=1

αi ⊗ Zi. (8)

Let us choose the basic 1-forms αi in such a way that αi = dci and let us denote a
foliation of M given by the functions ci by N . This foliation consists of the leaves
Nν = {x ∈ M : ci(x) = νi, i = 1, . . . , r}, ν = (νr , . . . , νr ). Condition 1 of the above
definition implies that the distribution Z spanned by the vector fields Zi is transversal to the
foliation N . Thus, for any x ∈ M we have

TxM = TxNν ⊕ Zx, T ∗
x M = T ∗

x Nν ⊕ Z∗
x (9)

where Nν is a leaf from the foliation N that passes through x, the symbol ⊕ denotes the direct
sum of the vector spaces, Zx is the subspace of TxM spanned by the vectors Zi at this point,
T ∗

x Nν is the annihilator of Zx and Z∗
x is the annihilator of TxNν . Condition 2 of the above

definition implies that Im(�) = TN , condition 3 means that Im(�) = T ∗N and condition 4
describes the degree of degeneracy of our pair.

Definition 2. A dual pair (�,�) is called a dual Poisson–presymplectic pair (in short: dual
P–p pair) if � is a Poisson bivector and if � is a closed 2-form.

Note that in the case when a dual P–p pair has no degeneration (r = 0), we get the
usual Poisson–symplectic pair of mutually inverse operators, since (7) reads then as I = ��.
Moreover, for a degenerated case, when r 
= 0, as � is presymplectic, then ker(�) is an
integrable distribution with [Zi, Zj ] = 0, i, j = 1, . . . , r , and for � Poisson, αi are exact
one-forms generated by Casimir functions: αi = dci, i = 1, . . . , r. The commutativity of
Zi follows from condition 1 of definition 1. The following lemma will be useful in further
considerations.

Lemma 3. Let (�,�) be a dual P–p pair, then

LZi
� = 0, i = 1, . . . , r.

Assume that (�,�) is a dual P–p pair and

� dF = XF (10)

is a Hamiltonian vector field with respect to �. Applying � to both sides of (10) and using
the decomposition (8) we get

dF = �(XF ) +
r∑

i=1

Zi(F ) dci, (11)

which reconstructs dF from XF and Zi(F ) in the case of degenerated Poisson structure
�. In that sense � plays the role of the ‘inverse’ of �. Note that inverse Hamiltonian
vector fields with respect to � are related to functions which are annihilated by ker(�), i.e.
Zi(F ) = 0, i = 1, . . . , r. Then, equation (11) reduces to (3) with �(XF ) = �(XF ). It
means that XF is not only a Hamiltonian but also inverse Hamiltonian vector field related to
the same Hamiltonian function F. Moreover, it is a gauge freedom for inverse Hamiltonian
vector fields XF with respect to �. Indeed, applying � to both sides of equation (3) and using
decomposition (7) one gets

XF − XF =
∑

i

XF (ci)Zi.
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It means that an inverse Hamiltonian vector field XF is simultaneously a Hamiltonian vector
field, i.e. XF = XF , if XF annihilates the kernel of �.

The definition of dual objects is not unique and questions about the ‘gauge freedom’ can
be posed. A possible realization of such a freedom is as follows: given a dual P–p pair (�,�)

we are looking for possible deformations of � to get a new presymplectic form �′ ensuring
that (�,�′) is dual again. Another possibility is related to a gauge freedom for the operator
�, i.e. how can we deform � to a new Poisson bivector �′ so that (�′,�) is also the dual
pair. An example of such a gauge freedom is given in the following proposition:

Proposition 4. Let (�,�) be a dual P–p pair as in definitions 1 and 2. Suppose that Fi are
real functions on M related to vector fields Ki which are simultaneously Hamiltonian and
inverse Hamiltonian with respect to (�,�) pair

dFi = �Ki, Ki = � dFi, i = 1, . . . , r.

Then

(i)

�′ = � +
∑

i

dFi ∧ dci,

is a dual to � presymplectic 2-form, provided that

�(dFi, dFj ) = 0 for all i, j.

(ii)

�′ = � +
∑

i

Zi ∧ Ki

is a dual to the � Poisson bivector, provided that

�(Ki,Kj ) = 0 for all i, j.

Let us now turn our attention to brackets induced on the space C∞(M). We know that
the Poisson operator � turns C∞(M) into a Poisson algebra with the Poisson bracket (5)

{F,G}� = �(dF, dG) = 〈dF,� dG〉.
In case when � is a part of a dual P–p pair we can define the above bracket through the � in
the following way:

Lemma 5. Let (�,�) be a dual P–p pair. Define a new bracket on C∞(M)

{F,G}� := �(XF ,XG) = 〈�XF ,XG〉, XF = � dF.

Then {·,·}� = {·,·}�, i.e. both brackets are identical.

The proofs of lemma 3, lemma 5 and proposition 4, as well as more details on the concept
of dual P–p pairs the reader can find in [12].

Now we pass to the concept of compatibility.

Definition 6. A Poisson bivector � and presymplectic two-form � are called a compatible
P–p pair if �D := ��� is presymplectic.

As well known (see for example [1]) if (�,�) is a compatible P–p pair, then the second
order tensor 	 = �� : TM → TM has vanishing Nijenhuis torsion

L	τ	 − 	Lτ	 = 0, ∀τ ∈ TM,
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and is called a hereditary operator or recursion operator. Moreover, �D := ��� is a Poisson
bivector. Observe that a dual P–p pair (�0,�0) is a trivial example of a compatible pair as

�D = �0�0�0 = �0

(
I −

∑
i

Zi ⊗ dci

)
= �0. (12)

Lemma 7. If � is a presymplectic 2-form compatible with a Poisson bivector �0, then the
bracket

{F,G}� := �
(
X0

F ,X0
G

)
, X0

F = �0 dF

is a Poisson bracket.

Proof.

{F,G}� = 〈
�X0

F ,X0
G

〉 = 〈��0 dF,�0 dG〉 = −〈dG,�0��0 dF 〉
= 〈dF,�0��0 dG〉 = 〈dF,�D dG〉
= {F,G}�D

and �D is Poisson. �

Obviously, when � = �0, i.e. the compatible pair is simply a dual pair, then we deal
with a special case described by lemma 5. Moreover, if (�,�0) is a compatible P–p pair and
ker(�0) = Sp{Zi}i=1,...,r , then

�0
(
LZi

�
)
�0 = 0, i = 1, . . . , r, (13)

which follows from (4).

Theorem 8. Let (�0,�0) be a dual P–p pair, such that ker �0 = Sp{Zi} and ker �0 =
Sp{dci}. Moreover, let � be a Poisson bivector compatible with �0, then

(i)

�d := �0�D�0 = �0�0��0�0

= � −
∑

i

Xi ∧ Zi +
1

2

∑
i,j

cijZi ∧ Zj , (14)

(ii)

LZi
�d = 0, i = 1, . . . , r, (15)

(iii)

LZl
� =

∑
i

[Zl,Xi] ∧ Zi − 1

2

∑
i,j

Zl(cij )Zi ∧ Zj , (16)

where Xi = � dci, cij = �(dci, dcj ) = 〈dci,� dcj 〉,
(iv) �d is Poisson.

Proof. From the definition of �d we have

�d = �0�0��0�0 =
(

I −
∑

i

Zi ⊗ dci

)
�


I −

∑
j

dcj ⊗ Zj




= � −
∑

i

Xi ∧ Zi +
1

2

∑
i,j

cijZi ∧ Zj .
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Then, from lemma 3 and relation (13), it follows that LZi
�d = 0. Next, from (i) and (ii)

immediately follows (iii). Finally we prove the property (iv). If X, Y are some vector fields,
then their Schouten bracket [X, Y ]S = [X, Y ] = LXY is a usual Lie bracket (commutator).
Moreover, for arbitrary bivector P and function F, the Schouten bracket fulfils the relations

[X ∧ Y, P ]S = Y ∧ [X,P ]S − X ∧ [Y, P ]S, [X,P ]S = LXP (17)

and

LFXP = FLXP − (P dF) ∧ X. (18)

Now, using (17) and (18), after straightforward but lengthy calculations, one finds

[�d,�d ]S = [�,�]S − 2

[
�,

∑
i

Xi ∧ Zi

]
S

+


�,

∑
i,j

cijZi ∧ Zj




S

+


∑

i

Xi ∧ Zi,
∑

j

Xj ∧ Zj




S

−

∑

k

Xk ∧ Zk,
∑
i,j

cijZi ∧ Zj




S

+
1

4


∑

i,j

cijZi ∧ Zj ,
∑
k,l

cklZk ∧ Zl




S

=
∑
i,j,k

Xk(cij )Zi ∧ Zk ∧ Zj = 0,

as∑
i,j,k

Xk(cij )Zi ∧ Zj ∧ Zk = 1

3

∑
i,j,k

[Xk(cij ) + Xk(cij ) + Xk(cij )]Zi ∧ Zk ∧ Zj = 0

which follows from Jacobi identity. �

As the concept of compatibility will be important in the reduction scheme for bi-
Hamiltonian chains, the following theorem will be useful in the further considerations.

Theorem 9. Let (�0,�0) be a dual P–p pair such that ker �0 = Sp{Zi} and � be a Poisson
tensor compatible with �0. Then, � is compatible with �0 if

�0(LZi
�)�0 = 0, i = 1, . . . , k. (19)

Proof. First we gather all necessary formulae important for the calculation. For any Poisson
operator �

L�γ � = −�(dγ )�, ∀γ ∈ T ∗M, (20)

for any presymplectic form �

LX� = d(�X), ∀X ∈ T M (21)

and for an arbitrary second-order mixed rank tensor 	

[	X1, X2] = 	[X1, X2] +
(
LX2	

)
X1. (22)

For arbitrary vectors X1, X2, X 1-forms α1, α2, 2-form � and function F, the following
relations hold:
(X1 ⊗ X2)(α1 ⊗ α2) = α1(X2)X1 ⊗ α2, α1(X2) = 〈α1, X2〉,
�(α1 ⊗ α2) = �(α1) ⊗ α2, �(X1 ⊗ X2) = �(X1) ⊗ X2,

(α1 ⊗ α2)� = −α1 ⊗ (�α2), (X1 ⊗ X2)� = −X1 ⊗ (�X2),

LFX� = FLX� + dF ∧ �X.

(23)
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As �0 and � are compatible so � + λ�0 is Poisson, hence for ∀τ ∈ T M and γ = �0τ from
(20) we have

0 = L(�+λ�0)γ (� + λ�0) + (� + λ�0) dγ (� + λ�0)

= λ
(
L�γ �0 + L�0γ � + �(dγ )�0 + �0(dγ )�

)
.

Applying (7), (20) and (18) we find

L�γ �0 = −�0
(
L��0τ�0

)
�0 −

∑
i

(
�0 dai

γ

) ∧ Zi,

where ai
γ = 〈dci,�γ 〉, LZi

�0 = 0 and

L�0γ � = Lτ� −
∑

i

Lτ(ci )Zi
�,

hence

0 = −�0
(
L��0τ�0

)
�0 +

∑
i

Lai
γ Zi

�0 + Lτ�−
∑

i

Lτ(ci )Zi
� + �(Lτ�0)�0 + �0(Lτ�0)�.

Multiplying from left and right by �0 and using (7), after strenuous but straightforward
calculations with the application of formulae (20)–(23) we arrive at the relation

0 = −d(�0��0τ) + Lτ (�0��0) −
∑

i

[
�0

(
LZi

�
)
�0

]
τ ∧ dci −

∑
i

τ (ci)�0
(
LZi

�
)
�0.

Hence, �0��0 is closed if∑
i

[
�0

(
LZi

�
)
�0

]
τ ∧ dci +

∑
i

τ (ci)�0
(
LZi

�
)
�0 = 0.

As the last equality holds for an arbitrary vector field τ, hence

�0
(
LZi

�
)
�0 = 0, i = 1, . . . , r. �

Definition 10. Let (�0,�0) be a dual P–p pair and � be a Poisson bivector. We say that �

is compatible with the pair (�0,�0) if � is compatible with �0 and �0.

Up to now, we have induced a Poisson bracket on C∞(M) in various ways using not only
Poisson bivectors but also dual pairs and compatible pairs. So, the question is what is the most
general way of introducing a Poisson algebra on C∞(M).

Definition 11. Assume that � is some bivector and � is a 2-form. A pair (�,�) is called
a Poisson pair if �D = ��� is Poisson. Two Poisson pairs (�1,�1) and (�2,�2) will be
called equivalent if �1�1�1 = �2�2�2.

Each compatible pair is simultaneously a Poisson pair. For a given Poisson pair (�,�)

the bracket

{F,G}�� := �(� dF,� dG) = 〈�� dF,� dG〉 = 〈dF,��� dG〉
= (���)(dF, dG) = {F,G}�D

is a Poisson bracket. Hence, the property of closeness of � is too strong for the definition of
a Poisson algebra.

Definition 12. Let � be a bivector with a kernel spanned by exact 1-forms. A 2-form � is
called weakly presymplectic with respect to � if it is closed on Im� = TN , where N is the
foliation given by functions whose differentials span the kernel of �.

Obviously, if (�,�) is a Poisson pair then � is weakly presymplectic with respect to �.
As we will see later, weakly presymplectic forms play an important role in bi-Hamiltonian
chains and in the reduction procedure.
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3. Presymplectic representation of Gel’fand–Zakharevich chains

Let us consider a bi-Poisson manifold (M,�0,�1) of dim M = m = 2n + r where �0,�1 is
a pair of compatible Poisson tensors of rank 2n. Moreover, we assume that the Poisson pencil
�λ admits r, polynomial with respect to the pencil parameter λ, Casimir functions of the form

H(j)(λ) =
nj∑
i=0

H
(j)

i λnj −i , j = 1, . . . , r, (24)

such that n1 + · · · + nr = n and H
(j)

i are functionally independent. The collection of n
bi-Hamiltonian vector fields

X
(j)

i = �1 dH
(j)

i−1 = �0 dH
(j)

i , i = 1, . . . , nj , j = 1, . . . , r, (25)

constructed from Casimirs of the pencil

�λ dH(j)(λ) = 0,

is called the Gel’fand–Zakharevich system of the bi-Poisson manifold M [13, 14]. Note that
each chain starts from a Casimir of �0 and terminates with a Casimir of �1. Moreover all
H

(j)

i pairwise commute with respect to both Poisson structures

X
(j)

i

(
H

(k)
l

) = 〈
dH

(k)
l ,�0 dH

(j)

i

〉 = 〈
dH

(k)
l ,�1 dH

(j)

i−1

〉 = 0.


�λ

(
dH

(j)

i , dH
(k)
l

) = 0.

3.1. Bi-presymplectic representation of one-Casimir chains

As in this subsection we restrict our considerations to the simplest case of r = 1, i.e. to the
one-Casimir case, we will use the following notation for a single bi-Hamiltonian chain

Xi = �0 dHi = �1 dHi−1, i = 0, . . . , n + 1. (26)

The chain starts with a Casimir H0 of �0 and terminates with a Casimir Hn of �1.

Let �0 be a dual to �0 presymplectic form. The kernels of �0 and �0 are one dimensional:
ker �0 = Z, ker �0 = dH0 and

LZ�0 = 0, LZ�0 = 0.

We assume that �0(LZ�1)�0 = 0, i.e. that �1 is compatible with the P–p pair (�0,�0), so

LZ�1 = [Z,X1] ∧ Z, X1 = �1 dH0

and

�1D := �0�1�0

is also presymplectic with ker �0 ⊆ ker �1D.

Next, we construct the following 2-form:

�1 = �1D + �0X1 ∧ dH0 = �1D + dH1 ∧ dH0.

It is obviously a presymplectic form. Moreover, (�0,�1) is a Poisson pair. Indeed,

�0�1�0 = �0�1D�0 + �0(dH1 ∧ dH0)�0 = �0�1D�0 = �1d = �1 − X1 ∧ Z (27)

which is Poisson according to theorem 8.

Lemma 13. Vector field Y = Xn + Z(Hn)Z belongs to ker �1.
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Proof.

�1Y = (�1D − dH0 ∧ dH1)(Xn + Z(Hn)Z)

= (�0�1�0)Xn − Z(Hn)Z(H1) dH0 + Z(Hn) dH1.

On the other hand, from (11) and the fact that H0 is the only Casimir function of �0

(�0�1�0)Xn = �0�1(dHn − Z(Hn) dH0) = −Z(Hn)�0X1

= −Z(Hn)(dH1 − Z(H1) dH0)

= −Z(Hn) dH1 + Z(Hn)Z(H1) dH0. �

Now we are prepared to formulate the following theorem:

Theorem 14. Bi-presymplectic representation of the bi-Poisson chain (26) takes the form

βi = �0Yi = �1Yi−1, i = 0, . . . , n + 1, (28)

where

Yi = Xi + Z(Hi)Z, βi = dHi − Z(Hi) dH0.

The chain starts with a kernel vector field Y0 = Z of �0 and terminates with a kernel vector
field Yn ≡ Y = Xn + Z(Hn)Z of �1.

Proof.

�0Yi = �0Xi,

�1Yi−1 = (�0�1�0 − dH0 ∧ dH1)(Xi−1 + Z(Hi−1)Z)

= (�0�1�0)Xi−1 − Z(Hi−1)Z(H1) dH0 + Z(Hi−1) dH1,

(�0�1�0)Xi−1 = �0�1(dHi−1 − Z(Hi−1) dH0) = �0(Xi) − Z(Hi−1)X1

= �0Xi − Z(Hi−1)�0X1

= �0Xi − Z(Hi−1) dH1 + Z(Hi−1)Z(H1) dH0. �

Observe that neither Xi nor Yi vector fields are inverse Hamiltonian with respect to �0

and �1. Besides [Yi, Yj ] 
= 0. Introducing a presymplectic pencil

�λ = �1 − λ�0

with a kernel vector field

Y =
n∑

i=0

Yiλ
n−i ,

the bi-presymplectic chain (28) takes the form �λY = 0. On the other hand, the pairs (�0,�0)

and (�0,�1) are Poisson pairs, hence �0 and �1 define Poisson brackets. The first one is
equal to that given by �0 (12) while the second one is equal to that given by �1d (27).
Moreover,

�0(Xi,Xj ) = {Hi,Hj }�0 = 0, �1(Xi,Xj ) = {Hi,Hj }�1d
= 0.

The first bracket is obvious, the second one follows from the relation

�1Xi = (�1D + dH1 ∧ dH0)Xi = �0�1�0Xi = �0�1(dHi) − Z(Hi) dH0

= �0Xi+1 − Z(Hi)�0X1

and the first bracket. Additionally, Poisson tensors �0 and �1d are compatible as

[�1d ,�0]S = [�1 − X1 ∧ Z,�0]S = X1 ∧ [Z,�0]S − Z ∧ [X1,�0]S = 0.

As a consequence (�0,�λ) is a Poisson pair and

�λ(Xi,Xj ) = 0.



Presymplectic representation of bi-Hamiltonian chains 11981

3.2. Weakly bi-presymplectic representation of multi-Casimir chains

In this subsection we will show that bi-presymplectic representation is purely an one-
Casimir phenomenon. Consider the r-Casimir Gel’fand–Zakharevich chain (24), (25). Let
�0 be a dual to �0 presymplectic form. The kernels of �0 and �0 are r-dimensional:
ker �0 = Sp{Zi}i=1,...,r , ker �0 = Sp

{
dH

(i)
0

}
i=1,...,r

and

LZi
�0 = 0, LZi

�0 = 0, i = 1, . . . , r. (29)

We assume that �0
(
LZi

�1
)
�0 = 0, i.e. that �1 is compatible with the P–p pair (�0,�0), so

from involutivity of H
(i)
k relation (16) takes the form

LZi
�1 =

∑
k

[
Zi,X

(k)
1

] ∧ Zk, X
(k)
1 = �1 dH

(k)
0

and

�1D := �0�1�0

is also presymplectic with ker �0 ⊆ ker �1D.

Next, we construct the following 2-forms

�1 = �1D +
r∑

j=1

�0X
(j)

1 ∧ dH
(j)

0 , �1 = �1D +
r∑

j=1

dH
(j)

1 ∧ dH
(j)

0 ,

related with each other as follows

�1 = �1 +
1

2

∑
k,l

Akl dH
(k)
0 ∧ dH

(l)
0 , Akl = Zk

(
H

(l)
1

) − Zl

(
H

(k)
1

)
.

Obviously �1 is presymplectic and together with �0 forms a Poisson pair as

�0�1�0 = �0�1D�0 = �0�0�1�0�0 = �1d = �1 −
∑

i

X
(i)
1 ∧ Zi

is Poisson. It is also clear that �1 is not closed as

d�1 = −1

2

∑
k,l

dAkl ∧ dH
(k)
0 ∧ dH

(l)
0 ,

but is weakly presymplectic with respect to �0

d�1(�0α1,�0α2,�0α3) = 0, ∀α1, α2, α3 ∈ T ∗M.

Moreover, (�0,�1) is a Poisson pair equivalent to the (�0,�1) one as �0�1�0 = �0�1�0 =
�1d .

Theorem 15. Multi-Casimir bi-Poisson chains (25) have weakly bi-presymplectic
representation

β
(j)

i = �0Y
(j)

i = �1Y
(j)

i−1, j = 1, . . . , r, i = 0, . . . , nj + 1, (30)

where

Y
(j)

i = X
(j)

i +
r∑

k=1

Zk

(
H

(j)

i

)
Zk, β

(j)

i = dH
(j)

i −
r∑

k=1

Zk

(
H

(j)

i

)
dH

(k)
0 .

The j th chain starts with a kernel vector field Y
(j)

0 = Zj of �0 and terminates with a kernel

vector field Y
(j)
nj

= X
(j)
nj

+
∑m

k=1 Zk

(
H

(j)
nj

)
Zk of �1.
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Proof. We have

�0Y
(j)

i = �0X
(j)

i .

On the other hand,

�1Y
(j)

i−1 =
(

�0�1�0 +
∑

l

�0X
(l)
1 ∧ dH

(l)
0

) (
X

(j)

i−1 +
∑

k

Zk

(
H

(j)

i−1

)
Zk

)

= �0�1�0X
(j)

i−1 +

(∑
l

�0X
(l)
1 ∧ dH

(l)
0

)
X

(j)

i−1

+
∑
l,k

Zk

(
H

(j)

i−1

)(
�0X

(l)
1 ∧ dH

(l)
0

)
Zk.

Using decomposition (11) and bi-Hamiltonian chains (25) one finds

�0�1�0X
(j)

i−1 = �0X
(j)

i −
∑

k

Zk

(
H

(j)

i−1

)
dH

(k)
1 +

∑
l,k

Zk

(
H

(j)

i−1

)
Zl

(
H

(k)
1

)
dH

(l)
0 ,

∑
l,k

Zk

(
H

(j)

i−1

)(
�0X

(l)
1 ∧ dH

(l)
0

)
Zk =

∑
k

Zk

(
H

(j)

i−1

)
dH

(k)
1 −

∑
j,k

Zk

(
H

(j)

i−1

)
Zl

(
H

(k)
1

)
dH

(l)
0 ,

(∑
l

�0X
(l)
1 ∧ dH

(l)
0

)
X

(j)

i−1 = −
∑

l

�0
(
X

(l)
1 , X

(j)

i−1

)
dH

(l)
0 = 0.

The last equality follows from the fact that �0
(
X

(l)
1 , X

(j)

i−1

) = �0
(
dH

(l)
1 , dH

(j)

i−1

) = 0. Hence

�1Y
(j)

i−1 = �0X
(j)

i . �

Introducing a weakly presymplectic pencil

�λ = �1 − λ�0

with respect to �0, with kernel vector fields

Y (j) =
nj∑
i=0

Y
(j)

i λnj −i , j = 1, . . . , r,

the weakly bi-presymplectic chains (30) take the form �λY
(j) = 0. On the other hand, as we

mentioned before, the pairs (�0,�0) and (�0,�1) are Poisson pairs, hence �0 and �1 define
Poisson brackets. The first one is equal to that given by �0 while the second one is equal to
that given by �1d . Moreover,

�0
(
X

(k)
i , X

(l)
j

) = {
H

(k)
i , H

(l)
j

}
�0

= 0, �1
(
X

(k)
i , X

(l)
j

) = {
H

(k)
i , H

(l)
j

}
�1d

= 0.

The first bracket is obvious; the second one follows from the relation

�1X
(k)
i =

(
�1D +

∑
r

dH
(r)
1 ∧ dH

(r)
0

)
X

(k)
i = �0�1�0X

(k)
i

= �0�1

(
dH

(k)
i −

∑
r

Zr

(
H

(k)
i

)
dH

(r)
0

)

= �0X
(k)
i+1 −

∑
r

Zr

(
H

(k)
i

)
�0X

(r)
1
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and the first bracket. Additionally, Poisson tensors �0 and �1d are compatible as

[�1d ,�0]S =
[
�1 −

∑
i

X
(i)
1 ∧ Zi,�0

]
S

=
∑

i

(
X

(i)
1 ∧ [Zi,�0]S − Zi ∧ [

X
(i)
1 ,�0

]
S

)
=

∑
i

(
X

(i)
1 ∧ LZi

�0 − Zi ∧ L
X

(i)
1

�0
)

= 0.

As a consequence, (�0,�λ) is a Poisson pair and

�λ(Xi,Xj ) = 0.

Now, let us consider the presymplectic pencil

�λ = �1 − λ�0.

As (�0,�1) is a Poisson pair equivalent to the Poisson pair (�0,�1), then

�λ(Xi,Xj ) = 0.

Moreover, chains (30) take the form

β
(j)

i = �0Y
(j)

i = �1Y
(j)

i−1 −
∑

k

B
(j)

i−1,k dH
(k)
0 , B

(j)

i,k =
∑

l

AklZl

(
H

(j)

i

)
,

where j = 1, . . . , r, i = 0, . . . , nj + 1.

4. Reduction procedure for Gel’fand–Zakharevich chains

Let us consider a (2n + r)-dimensional manifold M and 2n-dimensional submanifold N of
M. Then, let us fix an integrable distribution Z of constant dimension r that is transversal
to N . As mentioned in section 2, such a case is realized by an appropriate dual P–p pair
defined on M. Indeed, let (�0,�0) be a dual P–p pair on M with ker �0 = Z = Sp{Zi} and
ker �0 = Z∗ = Sp{dci}, i = 1, . . . , r where obviously Zi(cj ) = δij and [Zi, Zj ] = 0. Then,
N is a fixed symplectic leaf of � and Z consists of vector fields from ker �0 evaluated on N .
An appropriate decomposition of tangent and cotangent bundle of M is given by (9).

Definition 16. A function F : M → R is called invariant with respect to distribution Z if

LZi
F = Zi(F ) = 0, ∀Zi ∈ Z.

The set of such functions will be denoted by A.

Definition 17. The Poisson tensor � is called invariant with respect to the distribution Z if
functions that are invariant along Z form a Poisson subalgebra with respect to �, that is

LZi
�(dF, dG) = 0, Zi(F ) = Zi(G) = 0. (31)

We will denote this subalgebra by A(�).

Note that �0 is obviously Z-invariant as LZi
�0 = 0, hence A(�0) is also a Poisson

subalgebra.

Lemma 18. If Poisson bivector � is compatible with a presymplectic form �0, then it is
invariant with respect to the distribution Z = ker �0.
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Proof. Assume Zi(F ) = Zi(G) = 0 for all i. We have to show that condition (31) is fulfilled.
But due to theorem 8 it follows that

LZl
�(dF, dG) = (

LZl
�

)
(dF, dG) = 〈

dF,
(
LZl

�
)

dG
〉

=
〈

dF,


∑

i

[Zl,Xi] ∧ Zi − 1

2

∑
i,j

Zl(cij )Zi ∧ Zj


 dG

〉

=
∑

i

(Zi(G)[Zl,Xi](F ) − Zi(F )[Zl,Xi](G))

− 1

2

∑
i,j

Zl(cij )[Zj(G)Zi(F ) − Zj(F )Zi(G)]

= 0. �

The invariance of Poisson tensors given in the form (14) was proved for the first time by
Vaisman [15].

As a consequence we conclude that an arbitrary Poisson bivector �, compatible with
a dual P–p pair (�0,�0), is reducible onto foliation given by Casimirs of �0 along the
distribution given by ker �0. Here we propose a simple constructive method of deriving the
reduced operator.

Lemma 19. Let � be a Poisson bivector compatible with a dual P–p pair (�0,�0) and π a
reduction of � onto a symplectic leaf Nν of �0 along the transversal distribution Z = ker �0.

Then, π can be constructed by a restriction of

�d = �0�0��0�0 = � −
∑

i

Xi ∧ Zi +
1

2

∑
i,j

cijZi ∧ Zj

to Nν

π = �d |Nν
. (32)

Proof. From the relation (14) and the fact that for F,G ∈ A〈
dF,


−

∑
i

Xi ∧ Zi +
1

2

∑
i,j

cijZi ∧ Zj


 dG

〉
= 0,

the Poisson operator � and its deformation �d both act in the same way on the set A, so that
both can be used to define the same reduced operator π on Nν . But as the image of �d is
tangent to Nν, what follows from the fact that ker �0 ⊂ ker �d , and �d is Poisson, then the
projection of �d onto Nν means simply its restriction to Nν . Obviously, if ker �d = ker �0,
then (32) means the restriction of �d to its symplectic leaf Nν . �

Now we pass to the reduction of bi-Hamiltonian chains in Poisson (25) and presymplectic
(30) representations onto symplectic foliation of �0. Let us denote the projections of �0,�1

onto N along Z by π0, π1 and restrictions of
(
H

(1)
1 , . . . , H (r)

nr

)∣∣
N to N by

(
h

(1)
1 , . . . , h(r)

nr

)
.

Proposition 20. The bi-Poisson chain (25), when reduced to N takes the form

π1 dh
(j)

i = π0 dh
(j)

i+1 −
r∑

k=1

α
(j)

ki π0 dh
(k)
1 , j = 1, . . . , r, i = 1, . . . , nj , (33)

where α
(j)

ki = Zk

(
H

(j)

i

)∣∣
N .
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Proof.

π1 dh
(j)

i = �1d |N dH
(j)

i

∣∣
N = (

�1d dH
(j)

i

)∣∣
N

= (
�1 dH

(j)

i

)∣∣
N −

r∑
k=1

(
Zk

(
H

(j)

i

)
X

(k)
1

)∣∣
N

= (
�0 dH

(j)

i+1

)|N −
r∑

k=1

(
Zk

(
H

(j)

i

)
�0 dH

(k)
1

)∣∣
N

= �0|N dH
(j)

i+1

∣∣
N −

r∑
k=1

Zk

(
H

(j)

i

)∣∣
N�0|N dH

(k)
1

∣∣
N

= π0 dh
(j)

i+1 −
r∑

k=1

Zk

(
H

(j)

i

)∣∣
Nπ0 dh

(k)
1 .

The second and fifth equalities are valid as in coordinates(
xi,H

(j)

0

)
, i = 1, . . . , 2n, j = 1, . . . , r (34)

on M, the last r rows and columns of �0 and �1d contain zeros only. Obviously we have

π0
(
dh

(j)

i , dh
(l)
k

) = π1
(
dh

(j)

i , dh
(l)
k

) = 0,

which follows from the construction of π0 and π1. �

Before we pass to the reduction of presymplectic representation (30), observe that
restrictions �0|N = ω0,�1|N = �1|N = ω1 are closed 2-forms. Moreover, π0 dh

(j)

i :=
K

(j)

i = X
(j)

i

∣∣
N , where |N means as usually a restriction, as

X
(j)

i

∣∣
N = (

�0 dH
(j)

i

)∣∣
N = �0|N dH

(j)

i

∣∣
N = π0 dh

(j)

i .

Proposition 21. When reduced to N , the weakly bi-presymplectic chain (25) takes the form

ω1K
(j)

i = ω0K
(j)

i+1 −
∑

k

α
(j)

ki ω0K
(j)

1 , j = 1, . . . , r, i = 1, . . . , nj . (35)

Proof.

ω1K
(j)

i = �1|NX
(j)

i

∣∣
N = (

�1X
(j)

i

)∣∣
N =

(
�1

(
Y

(j)

i −
∑

k

Zk

(
H

(j)

i

)
Zk

)) ∣∣∣∣∣
N

= (
�1Y

(j)

i

)∣∣
N −

∑
k

(
Zk

(
H

(j)

i

)
β

(j)

1

)∣∣
N

= (
�0Y

(j)

i+1

)∣∣
N −

∑
k

(
Zk

(
H

(j)

i

)
�0Y

(k)
1

)∣∣
N

= (
�0X

(j)

i+1

)∣∣
N −

∑
k

(
Zk

(
H

(j)

i

)
�0X

(k)
1

)∣∣
N

= �0|NX
(j)

i+1

∣∣
N −

∑
k

Zk

(
H

(j)

i

)∣∣
N�0|NX

(k)
1

∣∣
N

= ω0K
(j)

i+1 −
∑

k

α
(j)

ki ω0K
(j)

1 .

The second and seventh equalities are valid as in the coordinates (34) vector fields X
(j)

i have
the last r components equal to zero. �
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Note that

ω1 = �1|N = �1D|N = (�0�1�0)|N = (�0�1d�0)|N
= �0|N�1d |N�0|N = ω0π1ω0.

As ω1 is closed then (π1, ω0) is a compatible pair and N = π1ω0 is a recursion operator.
Moreover π1 = Nπ0 hence π0 and π1 are compatible. Now we immediately find that reduced
chains (33) and (35) are equivalent. As K

(j)

i = π0 dh
(j)

i , hence (35) takes the form

N∗ dh
(j)

i = dh
(j)

i+1 −
∑

k

α
(j)

ki dh
(j)

1 , j = 1, . . . , r, i = 1, . . . , nj , (36)

where N∗ = ω0π1 is a recursion operator for 1-forms. On the other hand, multiplying (33)
from the left by ω0 we arrive at (36) again. Moreover,

ω0
(
K

(j)

i , K
(r)
l

) = π0
(
dh

(j)

i , dh
(l)
k

) = 0, ω1
(
K

(j)

i , K
(r)
l

) = π1
(
dh

(j)

i , dh
(l)
k

) = 0.

As a consequence, the distribution tangent to the foliation of N defined by
(
h

(1)
1 , . . . , h(r)

nr

)
is bi-Lagrangian and the n-tuple

(
h

(1)
1 , . . . , h(r)

nr

)
of functionally independent Hamiltonians

is separable [10]. Separated coordinates are eigenvalues of the recursion operator N and
canonically conjugated momenta that put the recursion operator in the diagonal form.

We conclude this section with a statement, that the existence of weakly bi-presymplectic
representation of bi-Poisson chains is a sufficient condition for the separability of related
Hamiltonian systems.

5. Example

Let us illustrate our previous considerations with a simple nontrivial example of the integrable
case of the Henon–Heiles equations

(q1)tt = −3(q1)2 − 1
2 (q2)2 + c, (q2)tt = −q1q2. (37)

The system (37) can be put into a canonical Hamiltonian form with the Hamiltonian function
given by

H1 = 1
2p2

1 + 1
2p2

2 + (q1)3 + 1
2q1(q2)2 − cq1,

where p1 = q1
t , p2 = q2

t . The second constant of motion is

H2 = 1
2q2p1p2 − 1

2q1p2
2 + 1

16 (q2)4 + 1
4 (q1)2(q2)2 − 1

4c(q2)2.

The bi-Hamiltonian chain on M = Sp(q1, q2, p1, p2, c) is of the following form:

�0 dH0 = 0
�0 dH1 = X1 = �1 dH0

�0 dH2 = X2 = �1 dH1

0 = �1 dH2,

where H0 = c and the compatible Poisson bivectors are

�0 =




0 0 1 0 0
0 0 0 1 0

−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0


 ,
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�1 =




0 0 q1 1
2q2 p1

0 0 1
2q2 0 p2

−q1 − 1
2q2 0 1

2p2 −3(q1)2 − 1
2 (q2)2 + c

− 1
2q2 0 − 1

2p2 0 −q1q2

−p1 −p2 3(q1)2 + 1
2 (q2)2 − c q1q2 0




.

Now, dual to the canonical Poisson tensor �0 is a canonical presymplectic form

�0 =




0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0




with a kernel vector

Z = (0, 0, 0, 0, 1)T .

As evidently �0(LZ�1)�0 = 0, then �1 is compatible with the pair (�0,�0), so the second
presymplectic form is

�1 = �1D + dH1 ∧ dH0

=




0 − 1
2p2 −q1 − 1

2q2 3(q1)2 + 1
2 (q2)2 − c

1
2p2 0 − 1

2q2 0 q1q2

q1 1
2q2 0 0 p1

1
2q2 0 0 0 p2

−3(q1)2 − 1
2 (q2)2 + c −q1q2 −p1 −p2 0




.

Hence, the bi-presymplectic representation of the Henon–Heiles chain takes the form

�0Y0 = 0
�0Y1 = β1 = �1Y0

�0Y2 = β2 = �1Y1

0 = �1Y2

where vector fields Yi are

Y0 = Z = (0, 0, 0, 0, 1)T

Y1 = X1 + Z(H1)Z = (
p1, p2,−3(q1)2 − 1

2 (q2)2 + c,−q1q2,−q1
)T

Y2 = X1 + Z(H2)Z = (
1
2q2p2,

1
2q2p1 − q1p1,

1
2p2

2 − 1
2q1(q2)2,

− 1
2p1p2 − 1

4 (q2)3 − 1
2 (q1)2q2 + 1

2cq2,− 1
4 (q2)2

)T
.

The chain starts with a kernel vector field Y0 of �0 and terminates with a kernel vector field
Y2 of �1. The restriction of �0,�1d ,�0 and �1 to N = Sp(q1, q2, p1, p2) are

π0 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 , ω0 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 ,
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π1 =




0 0 q1 1
2q2

0 0 1
2q2 0

−q1 − 1
2q2 0 1

2p2

− 1
2q2 0 − 1

2p2 0


 , ω1 =




0 − 1
2p2 −q1 − 1

2q2

1
2p2 0 − 1

2q2 0

q1 1
2q2 0 0

1
2q2 0 0 0




with the recursion operator N of the form

N = π1ω0 =




q1 1
2q2 0 0

1
2q2 0 0 0

0 1
2p2 q1 1

2q2

− 1
2p2 0 1

2q2 0




and N∗ = NT .
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