Presymplectic representation of bi-Hamiltonian chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 3711971
(http://iopscience.iop.org/0305-4470/37/50/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:49

Please note that terms and conditions apply.

Presymplectic representation of bi-Hamiltonian chains

Maciej Błaszak
Institute of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

Received 23 April 2004, in final form 21 October 2004
Published 1 December 2004
Online at stacks.iop.org/JPhysA/37/11971
doi:10.1088/0305-4470/37/50/003

Abstract

Liouville integrable systems, which have bi-Hamiltonian representation of the Gel'fand-Zakharevich type, are considered. Bi-presymplectic representation of one-Casimir bi-Hamiltonian chains and weakly bi-presymplectic representation of multi-Casimir bi-Hamiltonian chains are constructed. The reduction procedure for Poisson and presymplectic structures is presented.

PACS number: 02.30.Ik

1. Introduction

The bi-Poisson formulation of finite dimensional integrable Hamiltonian systems has been systematically developed over the last two decades (see [1] and the literature quoted therein). It has been found that most of the known Liouville integrable finite dimensional systems have more then one Hamiltonian representation. Moreover, in the majority of known cases, both Poisson structures of a given flow are degenerated. Perhaps this is the reason why such an important property of integrable systems was discovered so late, relative to the age of classical mechanics. For such systems, related bi-Poisson (bi-Hamiltonian) commuting vector fields belong to one or more bi-Hamiltonian chains starting and terminating with Casimirs of respective Poisson structures. An important aspect of such a construction is its relation to the recently developed geometric separability theory [2-10]. Actually, the necessary condition for the existence of separation coordinates is the reducibility of one of the Poisson structures onto a symplectic leaf of the other one. An important fact is that the whole procedure of variables separation is almost algorithmic.

On the other hand, it is well known from classical mechanics, that if the Poisson structure is nondegenerate, i.e. if the rank of the Poisson tensor is equal to the dimension of a phase space, then the phase space becomes a symplectic manifold with a symplectic structure being just the inverse of the Poisson structure. In such a case there exists an alternative (dual) description of Hamiltonian vector fields in the language of symplectic geometry. So, a natural question arises of whether one can construct such a dual picture in the degenerated case, when there is no natural inverse of the Poisson tensor [11].

A positive answer to this question is presented in the next sections of the paper. A dual presymplectic picture will be constructed for bi-Hamiltonian chains with one Casimir as well as with many Casimirs. The paper is organized as follows. In this section we recall some elementary facts from the Poisson and presymplectic geometry. In section 2 we introduce notions of dual pairs, compatible pairs and Poisson pairs and investigate some of their properties. In section 3, applying the results of the previous section, we construct a presymplectic representation of Poisson chains. In section 4 the deformation reduction procedure for Poisson and presymplectic chains is presented. Such a reduction is crucial for separability of underlying dynamical systems. Finally, in section 5, we illustrate the presented theory by a nontrivial example.

Given a manifold \mathcal{M} of $\operatorname{dim} \mathcal{M}=m$, a Poisson operator Π of corank r on \mathcal{M} is a bivector $\Pi \in \Lambda^{2}(\mathcal{M})$ with vanishing Schouten bracket:

$$
\begin{equation*}
[\Pi, \Pi]_{S}=0, \tag{1}
\end{equation*}
$$

whose kernel is spanned by exact 1 -forms

$$
\operatorname{ker} \Pi=S p\left\{\mathrm{~d} c_{i}\right\}_{i=1, \ldots, r}
$$

The symbol d denotes the operator of exterior derivative. In a given coordinate system $\left(x^{1}, \ldots, x^{m}\right)$ on \mathcal{M} we have

$$
\Pi=\sum_{i<j}^{m} \Pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}},
$$

while the Poisson property (1) takes the form

$$
\sum_{l}\left(\Pi^{l j} \partial_{l} \Pi^{i k}+\Pi^{i l} \partial_{l} \Pi^{k j}+\Pi^{k l} \partial_{l} \Pi^{j i}\right)=0, \quad \partial_{i}:=\frac{\partial}{\partial x^{i}}
$$

A function $c: \mathcal{M} \rightarrow \mathbb{R}$ is called the Casimir function of the Poisson operator Π if $\Pi \mathrm{d} c=0$. A linear combination $\Pi_{\lambda}=\Pi_{1}-\lambda \Pi_{0}(\lambda \in \mathbb{R})$ of two Poisson operators Π_{0} and Π_{1} is called a Poisson pencil if the operator Π_{λ} is Poisson for any value of the parameter λ. In this case we say that Π_{0} and Π_{1} are compatible. A vector field X_{F} related to a function F through the relation

$$
\begin{equation*}
X_{F}=\Pi \mathrm{d} F \tag{2}
\end{equation*}
$$

is called a Hamiltonian vector field with respect to the Poisson operator Π. It is also important to note that if X is any vector field on \mathcal{M} that is Hamiltonian with respect to Π, then $L_{X} \Pi=0$, where L_{X} is the Lie-derivative operator in the direction X.

Further, a presymplectic operator Ω on \mathcal{M} defines a 2 -form that is closed, i.e. $\mathrm{d} \Omega=0$, degenerated in general. In the coordinate system $\left(x^{1}, \ldots, x^{m}\right)$ on \mathcal{M} we can always represent Ω as

$$
\Omega=\sum_{i<j}^{m} \Omega_{i j} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j},
$$

where the closeness condition takes the form

$$
\partial_{i} \Omega_{j k}+\partial_{k} \Omega_{i j}+\partial_{j} \Omega_{k i}=0
$$

Moreover, the kernel of any presymplectic form is always an integrable distribution. A vector field X^{F} related to a function F by the relation

$$
\begin{equation*}
\Omega X^{F}=\mathrm{d} F \tag{3}
\end{equation*}
$$

is called the inverse Hamiltonian vector field with respect to the presymplectic operator Ω. Generally, if Ω is a closed 2 -form and X is an arbitrary vector field then

$$
\begin{equation*}
L_{X} \Omega=\mathrm{d}(\Omega X) \tag{4}
\end{equation*}
$$

Hence, if $\Omega(Y)=0$ for some vector field Y on \mathcal{M} then $L_{Y} \Omega=0$. Note that contrary to the Poisson case, a linear combination of two presymplectic operators is always presymplectic.

Poisson tensor Π, considered as the mapping $\Pi: T^{*} \mathcal{M} \rightarrow T \mathcal{M}$, induces a Lie bracket on the space $C^{\infty}(\mathcal{M})$ of all smooth real-valued functions on \mathcal{M}
$\{\cdot, \cdot\}_{\Pi}: C^{\infty}(\mathcal{M}) \times C^{\infty}(\mathcal{M}) \rightarrow C^{\infty}(\mathcal{M}), \quad\{F, G\}_{\Pi} \stackrel{\text { def }}{=}\langle\mathrm{d} F, \Pi \mathrm{~d} G\rangle=\Pi(\mathrm{d} F, \mathrm{~d} G)$,
(where $\langle\cdot, \cdot\rangle$ is the dual map between $T \mathcal{M}$ and $T^{*} \mathcal{M}$) which is skew-symmetric and satisfies Jacobi identity. It is called a Poisson bracket.

When a Poisson operator Π is nondegenerate, one can always define its inverse $\Omega=\Pi^{-1}$, called a symplectic operator, and then equations (2) and (3) are equivalent. Moreover, any Hamiltonian vector field with respect to Π is simultaneously the inverse Hamiltonian with respect to Ω and $X_{F}=X^{F}$. Finally, the symplectic operator Ω defines the same Poisson bracket as the related Poisson operator Π

$$
\begin{equation*}
\{F, G\}^{\Omega}:=\Omega\left(X^{F}, X^{G}\right)=\left\langle\Omega X^{F}, X^{G}\right\rangle=\langle\mathrm{d} F, \Pi \mathrm{~d} G\rangle=\{F, G\}_{\Pi} . \tag{6}
\end{equation*}
$$

The equivalence is destroyed in the case of degeneracy. First, one cannot define Ω as the inverse of Π. Second, for degenerated Π equation (2) is valid for an arbitrary function F (as in the nondegenerate case), while for degenerated Ω and an arbitrary F there is no such vector field X^{F} that (3) is fulfilled. It means that equation (3) is valid only for a particular class of functions (contrary to the nondegenerate case). Finally it is not clear how to define a Poisson bracket with respect to a presymplectic form.

2. Dual Poisson-presymplectic pairs and compatible structures

In this section we introduce basic objects important for the theory, further develop and them investigate some of their properties. As the concept of dual pairs was introduced and developed for the first time in our previous paper [12], here we only recall their main properties. Let us remark that the concept of dual Poisson-presymplectic pairs [12], which we are going to apply to bi-Poisson chains, is a useful particular realization of the concept of Poisson brackets on presymplectic manifolds, presented by Dubrovin et al [11].

Consider a smooth manifold M of dimension m equipped with a pair of antisymmetric operators Π, Ω.

Definition 1. A pair of antisymmetric tensor fields (Π, Ω) such that $\Pi: T^{*} \mathcal{M} \rightarrow T \mathcal{M}$, i.e. Π is twice contravariant, and $\Omega: T \mathcal{M} \rightarrow T^{*} \mathcal{M}$, i.e. Ω is twice covariant, is called a dual pair if there exist r 1-forms $\alpha_{i}, i=1, \ldots, r$, and r linearly independent vector fields $Z_{i}, i=1, \ldots, r$, such that the following conditions are satisfied:

1. $\alpha_{i}\left(Z_{j}\right)=\delta_{i j}$ for all $i, j=1, \ldots, r$.
2. The kernel of Π is spanned by all $\alpha_{i}, \operatorname{ker}(\Pi)=\operatorname{Sp}\left\{\alpha_{i}\right\}_{i=1, \ldots, r}$.
3. The kernel of Ω is spanned by all the vector fields $Z_{i}, \operatorname{ker}(\Omega)=\operatorname{Sp}\left\{Z_{i}\right\}_{i=1, \ldots, r}$.
4. The following partition of unity holds on $T \mathcal{M}$

$$
\begin{equation*}
I=\Pi \Omega+\sum_{i=1}^{r} Z_{i} \otimes \alpha_{i} \tag{7}
\end{equation*}
$$

where \otimes denotes the tensor product.

Note that the partition of unity (7) on $T^{*} \mathcal{M}$ takes the form

$$
\begin{equation*}
I=\Omega \Pi+\sum_{i=1}^{r} \alpha_{i} \otimes Z_{i} \tag{8}
\end{equation*}
$$

Let us choose the basic 1 -forms α_{i} in such a way that $\alpha_{i}=d c_{i}$ and let us denote a foliation of \mathcal{M} given by the functions c_{i} by \mathcal{N}. This foliation consists of the leaves $\mathcal{N}_{v}=\left\{x \in M: c_{i}(x)=v_{i}, i=1, \ldots, r\right\}, v=\left(v_{r}, \ldots, v_{r}\right)$. Condition 1 of the above definition implies that the distribution \mathcal{Z} spanned by the vector fields Z_{i} is transversal to the foliation \mathcal{N}. Thus, for any $x \in \mathcal{M}$ we have

$$
\begin{equation*}
T_{x} \mathcal{M}=T_{x} \mathcal{N}_{v} \oplus \mathcal{Z}_{x}, \quad T_{x}^{*} \mathcal{M}=T_{x}^{*} \mathcal{N}_{v} \oplus \mathcal{Z}_{x}^{*} \tag{9}
\end{equation*}
$$

where \mathcal{N}_{v} is a leaf from the foliation \mathcal{N} that passes through x, the symbol \oplus denotes the direct sum of the vector spaces, \mathcal{Z}_{x} is the subspace of $T_{x} \mathcal{M}$ spanned by the vectors Z_{i} at this point, $T_{x}^{*} \mathcal{N}_{\nu}$ is the annihilator of \mathcal{Z}_{x} and \mathcal{Z}_{x}^{*} is the annihilator of $T_{x} \mathcal{N}_{\nu}$. Condition 2 of the above definition implies that $\operatorname{Im}(\Pi)=T \mathcal{N}$, condition 3 means that $\operatorname{Im}(\Omega)=T^{*} \mathcal{N}$ and condition 4 describes the degree of degeneracy of our pair.

Definition 2. A dual pair (Π, Ω) is called a dual Poisson-presymplectic pair (in short: dual $P-p$ pair) if Π is a Poisson bivector and if Ω is a closed 2 -form.

Note that in the case when a dual $\mathrm{P}-\mathrm{p}$ pair has no degeneration $(r=0)$, we get the usual Poisson-symplectic pair of mutually inverse operators, since (7) reads then as $I=\Pi \Omega$. Moreover, for a degenerated case, when $r \neq 0$, as Ω is presymplectic, then $\operatorname{ker}(\Omega)$ is an integrable distribution with $\left[Z_{i}, Z_{j}\right]=0, i, j=1, \ldots, r$, and for Π Poisson, α_{i} are exact one-forms generated by Casimir functions: $\alpha_{i}=\mathrm{d} c_{i}, i=1, \ldots, r$. The commutativity of Z_{i} follows from condition 1 of definition 1 . The following lemma will be useful in further considerations.

Lemma 3. Let (Π, Ω) be a dual $P-p$ pair, then

$$
L_{Z_{i}} \Pi=0, \quad i=1, \ldots, r
$$

Assume that (Π, Ω) is a dual $\mathrm{P}-\mathrm{p}$ pair and

$$
\begin{equation*}
\Pi \mathrm{d} F=X_{F} \tag{10}
\end{equation*}
$$

is a Hamiltonian vector field with respect to Π. Applying Ω to both sides of (10) and using the decomposition (8) we get

$$
\begin{equation*}
\mathrm{d} F=\Omega\left(X_{F}\right)+\sum_{i=1}^{r} Z_{i}(F) \mathrm{d} c_{i}, \tag{11}
\end{equation*}
$$

which reconstructs $\mathrm{d} F$ from X_{F} and $Z_{i}(F)$ in the case of degenerated Poisson structure $П$. In that sense Ω plays the role of the 'inverse' of Π. Note that inverse Hamiltonian vector fields with respect to Ω are related to functions which are annihilated by $\operatorname{ker}(\Omega)$, i.e. $Z_{i}(F)=0, i=1, \ldots, r$. Then, equation (11) reduces to (3) with $\Omega\left(X_{F}\right)=\Omega\left(X^{F}\right)$. It means that X_{F} is not only a Hamiltonian but also inverse Hamiltonian vector field related to the same Hamiltonian function F. Moreover, it is a gauge freedom for inverse Hamiltonian vector fields X^{F} with respect to Ω. Indeed, applying Π to both sides of equation (3) and using decomposition (7) one gets

$$
X^{F}-X_{F}=\sum_{i} X^{F}\left(c_{i}\right) Z_{i}
$$

It means that an inverse Hamiltonian vector field X^{F} is simultaneously a Hamiltonian vector field, i.e. $X^{F}=X_{F}$, if X^{F} annihilates the kernel of Π.

The definition of dual objects is not unique and questions about the 'gauge freedom' can be posed. A possible realization of such a freedom is as follows: given a dual $\mathrm{P}-\mathrm{p}$ pair (Π, Ω) we are looking for possible deformations of Ω to get a new presymplectic form Ω^{\prime} ensuring that $\left(\Pi, \Omega^{\prime}\right)$ is dual again. Another possibility is related to a gauge freedom for the operator Π, i.e. how can we deform Π to a new Poisson bivector Π^{\prime} so that $\left(\Pi^{\prime}, \Omega\right)$ is also the dual pair. An example of such a gauge freedom is given in the following proposition:
Proposition 4. Let (Π, Ω) be a dual $P-p$ pair as in definitions 1 and 2. Suppose that F_{i} are real functions on \mathcal{M} related to vector fields K_{i} which are simultaneously Hamiltonian and inverse Hamiltonian with respect to (Π, Ω) pair

$$
\mathrm{d} F_{i}=\Omega K_{i}, \quad K_{i}=\Pi \mathrm{d} F_{i}, \quad i=1, \ldots, r
$$

Then
(i)

$$
\Omega^{\prime}=\Omega+\sum_{i} \mathrm{~d} F_{i} \wedge \mathrm{~d} c_{i}
$$

is a dual to Π presymplectic 2-form, provided that

$$
\Pi\left(\mathrm{d} F_{i}, \mathrm{~d} F_{j}\right)=0 \quad \text { for all } i, j
$$

(ii)

$$
\Pi^{\prime}=\Pi+\sum_{i} Z_{i} \wedge K_{i}
$$

is a dual to the Ω Poisson bivector, provided that

$$
\Omega\left(K_{i}, K_{j}\right)=0 \quad \text { for all } i, j .
$$

Let us now turn our attention to brackets induced on the space $C^{\infty}(\mathcal{M})$. We know that the Poisson operator Π turns $C^{\infty}(\mathcal{M})$ into a Poisson algebra with the Poisson bracket (5)

$$
\{F, G\}_{\Pi}=\Pi(\mathrm{d} F, \mathrm{~d} G)=\langle\mathrm{d} F, \Pi \mathrm{~d} G\rangle
$$

In case when Ω is a part of a dual $\mathrm{P}-\mathrm{p}$ pair we can define the above bracket through the Ω in the following way:

Lemma 5. Let (Π, Ω) be a dual $P-p$ pair. Define a new bracket on $C^{\infty}(\mathcal{M})$

$$
\{F, G\}^{\Omega}:=\Omega\left(X_{F}, X_{G}\right)=\left\langle\Omega X_{F}, X_{G}\right\rangle, \quad X_{F}=\Pi \mathrm{d} F
$$

Then $\{\cdot, \cdot\}^{\Omega}=\{\cdot, \cdot\}_{\Pi}$, i.e. both brackets are identical.
The proofs of lemma 3, lemma 5 and proposition 4, as well as more details on the concept of dual $\mathrm{P}-\mathrm{p}$ pairs the reader can find in [12].

Now we pass to the concept of compatibility.
Definition 6. A Poisson bivector Π and presymplectic two-form Ω are called a compatible $P-p$ pair if $\Omega_{D}:=\Omega \Pi \Omega$ is presymplectic.

As well known (see for example [1]) if (Π, Ω) is a compatible $\mathrm{P}-\mathrm{p}$ pair, then the second order tensor $\Phi=\Pi \Omega: T \mathcal{M} \rightarrow T \mathcal{M}$ has vanishing Nijenhuis torsion

$$
L_{\Phi \tau} \Phi-\Phi L_{\tau} \Phi=0, \quad \forall \tau \in T \mathcal{M}
$$

and is called a hereditary operator or recursion operator. Moreover, $\Pi_{D}:=\Pi \Omega \Pi$ is a Poisson bivector. Observe that a dual $\mathrm{P}-$ p pair $\left(\Pi_{0}, \Omega_{0}\right)$ is a trivial example of a compatible pair as

$$
\begin{equation*}
\Omega_{D}=\Omega_{0} \Pi_{0} \Omega_{0}=\Omega_{0}\left(I-\sum_{i} Z_{i} \otimes \mathrm{~d} c_{i}\right)=\Omega_{0} \tag{12}
\end{equation*}
$$

Lemma 7. If Ω is a presymplectic 2 -form compatible with a Poisson bivector Π_{0}, then the bracket

$$
\{F, G\}^{\Omega}:=\Omega\left(X_{F}^{0}, X_{G}^{0}\right), \quad X_{F}^{0}=\Pi_{0} \mathrm{~d} F
$$

is a Poisson bracket.

Proof.

$$
\begin{aligned}
\{F, G\}^{\Omega} & =\left\langle\Omega X_{F}^{0}, X_{G}^{0}\right\rangle=\left\langle\Omega \Pi_{0} \mathrm{~d} F, \Pi_{0} \mathrm{~d} G\right\rangle=-\left\langle\mathrm{d} G, \Pi_{0} \Omega \Pi_{0} \mathrm{~d} F\right\rangle \\
& =\left\langle\mathrm{d} F, \Pi_{0} \Omega \Pi_{0} \mathrm{~d} G\right\rangle=\left\langle\mathrm{d} F, \Pi_{D} \mathrm{~d} G\right\rangle \\
& =\{F, G\}_{\Pi_{D}}
\end{aligned}
$$

and Π_{D} is Poisson.
Obviously, when $\Omega=\Omega_{0}$, i.e. the compatible pair is simply a dual pair, then we deal with a special case described by lemma 5. Moreover, if $\left(\Pi, \Omega_{0}\right)$ is a compatible $\mathrm{P}-$ p pair and $\operatorname{ker}\left(\Omega_{0}\right)=\operatorname{Sp}\left\{Z_{i}\right\}_{i=1, \ldots, r}$, then

$$
\begin{equation*}
\Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}=0, \quad i=1, \ldots, r \tag{13}
\end{equation*}
$$

which follows from (4).
Theorem 8. Let $\left(\Pi_{0}, \Omega_{0}\right)$ be a dual $P-p$ pair, such that $\operatorname{ker} \Omega_{0}=\operatorname{Sp}\left\{Z_{i}\right\}$ and $\operatorname{ker} \Pi_{0}=$ $S p\left\{\mathrm{~d} c_{i}\right\}$. Moreover, let Π be a Poisson bivector compatible with Ω_{0}, then
(i)

$$
\begin{align*}
\Pi_{d}: & =\Pi_{0} \Omega_{D} \Pi_{0}=\Pi_{0} \Omega_{0} \Pi \Omega_{0} \Pi_{0} \\
& =\Pi-\sum_{i} X_{i} \wedge Z_{i}+\frac{1}{2} \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j} \tag{14}
\end{align*}
$$

(ii)

$$
\begin{equation*}
L_{Z_{i}} \Pi_{d}=0, \quad i=1, \ldots, r \tag{15}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
L_{Z_{l}} \Pi=\sum_{i}\left[Z_{l}, X_{i}\right] \wedge Z_{i}-\frac{1}{2} \sum_{i, j} Z_{l}\left(c_{i j}\right) Z_{i} \wedge Z_{j} \tag{16}
\end{equation*}
$$

where $X_{i}=\Pi \mathrm{d} c_{i}, c_{i j}=\Pi\left(\mathrm{d} c_{i}, \mathrm{~d} c_{j}\right)=\left\langle\mathrm{d} c_{i}, \Pi \mathrm{~d} c_{j}\right\rangle$,
(iv) Π_{d} is Poisson.

Proof. From the definition of Π_{d} we have

$$
\begin{aligned}
\Pi_{d} & =\Pi_{0} \Omega_{0} \Pi \Omega_{0} \Pi_{0}=\left(I-\sum_{i} Z_{i} \otimes \mathrm{~d} c_{i}\right) \Pi\left(I-\sum_{j} \mathrm{~d} c_{j} \otimes Z_{j}\right) \\
& =\Pi-\sum_{i} X_{i} \wedge Z_{i}+\frac{1}{2} \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}
\end{aligned}
$$

Then, from lemma 3 and relation (13), it follows that $L_{Z_{i}} \Pi_{d}=0$. Next, from (i) and (ii) immediately follows (iii). Finally we prove the property (iv). If X, Y are some vector fields, then their Schouten bracket $[X, Y]_{S}=[X, Y]=L_{X} Y$ is a usual Lie bracket (commutator). Moreover, for arbitrary bivector P and function F, the Schouten bracket fulfils the relations
$[X \wedge Y, P]_{S}=Y \wedge[X, P]_{S}-X \wedge[Y, P]_{S}, \quad[X, P]_{S}=L_{X} P$
and

$$
\begin{equation*}
L_{F X} P=F L_{X} P-(P \mathrm{~d} F) \wedge X \tag{18}
\end{equation*}
$$

Now, using (17) and (18), after straightforward but lengthy calculations, one finds

$$
\begin{aligned}
{\left[\Pi_{d}, \Pi_{d}\right]_{S}=} & {[\Pi, \Pi]_{S}-2\left[\Pi, \sum_{i} X_{i} \wedge Z_{i}\right]_{S}+\left[\Pi, \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}\right]_{S} } \\
& +\left[\sum_{i} X_{i} \wedge Z_{i}, \sum_{j} X_{j} \wedge Z_{j}\right]_{S}-\left[\sum_{k} X_{k} \wedge Z_{k}, \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}\right]_{S} \\
& +\frac{1}{4}\left[\sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}, \sum_{k, l} c_{k l} Z_{k} \wedge Z_{l}\right]_{S} \\
= & \sum_{i, j, k} X_{k}\left(c_{i j}\right) Z_{i} \wedge Z_{k} \wedge Z_{j}=0
\end{aligned}
$$

as
$\sum_{i, j, k} X_{k}\left(c_{i j}\right) Z_{i} \wedge Z_{j} \wedge Z_{k}=\frac{1}{3} \sum_{i, j, k}\left[X_{k}\left(c_{i j}\right)+X_{k}\left(c_{i j}\right)+X_{k}\left(c_{i j}\right)\right] Z_{i} \wedge Z_{k} \wedge Z_{j}=0$
which follows from Jacobi identity.
As the concept of compatibility will be important in the reduction scheme for biHamiltonian chains, the following theorem will be useful in the further considerations.
Theorem 9. Let $\left(\Pi_{0}, \Omega_{0}\right)$ be a dual $P-p$ pair such that $\operatorname{ker} \Omega_{0}=S p\left\{Z_{i}\right\}$ and Π be a Poisson tensor compatible with Π_{0}. Then, Π is compatible with Ω_{0} if

$$
\begin{equation*}
\Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}=0, \quad i=1, \ldots, k \tag{19}
\end{equation*}
$$

Proof. First we gather all necessary formulae important for the calculation. For any Poisson operator Π

$$
\begin{equation*}
L_{\Pi \gamma} \Pi=-\Pi(\mathrm{d} \gamma) \Pi, \quad \forall \gamma \in T^{*} M \tag{20}
\end{equation*}
$$

for any presymplectic form Ω

$$
\begin{equation*}
L_{X} \Omega=\mathrm{d}(\Omega X), \quad \forall X \in T M \tag{21}
\end{equation*}
$$

and for an arbitrary second-order mixed rank tensor Φ

$$
\begin{equation*}
\left[\Phi X_{1}, X_{2}\right]=\Phi\left[X_{1}, X_{2}\right]+\left(L_{X_{2}} \Phi\right) X_{1} \tag{22}
\end{equation*}
$$

For arbitrary vectors X_{1}, X_{2}, X 1-forms α_{1}, α_{2}, 2-form Ω and function F, the following relations hold:
$\left(X_{1} \otimes X_{2}\right)\left(\alpha_{1} \otimes \alpha_{2}\right)=\alpha_{1}\left(X_{2}\right) X_{1} \otimes \alpha_{2}, \quad \alpha_{1}\left(X_{2}\right)=\left\langle\alpha_{1}, X_{2}\right\rangle$,
$\Pi\left(\alpha_{1} \otimes \alpha_{2}\right)=\Pi\left(\alpha_{1}\right) \otimes \alpha_{2}$,
$\Omega\left(X_{1} \otimes X_{2}\right)=\Omega\left(X_{1}\right) \otimes X_{2}$,
$\left(\alpha_{1} \otimes \alpha_{2}\right) \Pi=-\alpha_{1} \otimes\left(\Pi \alpha_{2}\right)$,
$L_{F X} \Omega=F L_{X} \Omega+\mathrm{d} F \wedge \Omega X$.

$$
\begin{equation*}
\left(X_{1} \otimes X_{2}\right) \Omega=-X_{1} \otimes\left(\Omega X_{2}\right) \tag{23}
\end{equation*}
$$

As Π_{0} and Π are compatible so $\Pi+\lambda \Pi_{0}$ is Poisson, hence for $\forall \tau \in T M$ and $\gamma=\Omega_{0} \tau$ from (20) we have

$$
\begin{aligned}
0 & =L_{\left(\Pi+\lambda \Pi_{0}\right) \gamma}\left(\Pi+\lambda \Pi_{0}\right)+\left(\Pi+\lambda \Pi_{0}\right) \mathrm{d} \gamma\left(\Pi+\lambda \Pi_{0}\right) \\
& =\lambda\left(L_{\Pi \gamma} \Pi_{0}+L_{\Pi_{0} \gamma} \Pi+\Pi(\mathrm{d} \gamma) \Pi_{0}+\Pi_{0}(\mathrm{~d} \gamma) \Pi\right)
\end{aligned}
$$

Applying (7), (20) and (18) we find

$$
L_{\Pi_{\gamma}} \Pi_{0}=-\Pi_{0}\left(L_{\Pi \Omega_{0} \tau} \Omega_{0}\right) \Pi_{0}-\sum_{i}\left(\Pi_{0} \mathrm{~d} a_{\gamma}^{i}\right) \wedge Z_{i}
$$

where $a_{\gamma}^{i}=\left\langle\mathrm{d} c_{i}, \Pi \gamma\right\rangle, L_{Z_{i}} \Omega_{0}=0$ and

$$
L_{\Pi_{0} \gamma} \Pi=L_{\tau} \Pi-\sum_{i} L_{\tau\left(c_{i}\right) Z_{i}} \Pi,
$$

hence

$$
0=-\Pi_{0}\left(L_{\Pi \Omega_{0} \tau} \Omega_{0}\right) \Pi_{0}+\sum_{i} L_{a_{\gamma}^{i} Z_{i}} \Pi_{0}+L_{\tau} \Pi-\sum_{i} L_{\tau\left(c_{i}\right) Z_{i}} \Pi+\Pi\left(L_{\tau} \Omega_{0}\right) \Pi_{0}+\Pi_{0}\left(L_{\tau} \Omega_{0}\right) \Pi .
$$

Multiplying from left and right by Ω_{0} and using (7), after strenuous but straightforward calculations with the application of formulae (20)-(23) we arrive at the relation
$0=-\mathrm{d}\left(\Omega_{0} \Pi \Omega_{0} \tau\right)+L_{\tau}\left(\Omega_{0} \Pi \Omega_{0}\right)-\sum_{i}\left[\Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}\right] \tau \wedge \mathrm{d} c_{i}-\sum_{i} \tau\left(c_{i}\right) \Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}$.
Hence, $\Omega_{0} \Pi \Omega_{0}$ is closed if

$$
\sum_{i}\left[\Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}\right] \tau \wedge \mathrm{d} c_{i}+\sum_{i} \tau\left(c_{i}\right) \Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}=0
$$

As the last equality holds for an arbitrary vector field τ, hence

$$
\Omega_{0}\left(L_{Z_{i}} \Pi\right) \Omega_{0}=0, \quad i=1, \ldots, r
$$

Definition 10. Let $\left(\Pi_{0}, \Omega_{0}\right)$ be a dual $P-p$ pair and Π be a Poisson bivector. We say that Π is compatible with the pair $\left(\Pi_{0}, \Omega_{0}\right)$ if Π is compatible with Π_{0} and Ω_{0}.

Up to now, we have induced a Poisson bracket on $C^{\infty}(\mathcal{M})$ in various ways using not only Poisson bivectors but also dual pairs and compatible pairs. So, the question is what is the most general way of introducing a Poisson algebra on $C^{\infty}(\mathcal{M})$.

Definition 11. Assume that Π is some bivector and Ω is a 2 -form. A pair (Π, Ω) is called a Poisson pair if $\Pi_{D}=\Pi \Omega \Pi$ is Poisson. Two Poisson pairs $\left(\Pi_{1}, \Omega_{1}\right)$ and $\left(\Pi_{2}, \Omega_{2}\right)$ will be called equivalent if $\Pi_{1} \Omega_{1} \Pi_{1}=\Pi_{2} \Omega_{2} \Pi_{2}$.

Each compatible pair is simultaneously a Poisson pair. For a given Poisson pair (Π, Ω) the bracket

$$
\begin{aligned}
\{F, G\}_{\Pi}^{\Omega} & =\Omega(\Pi \mathrm{d} F, \Pi \mathrm{~d} G)=\langle\Omega \Pi \mathrm{d} F, \Pi \mathrm{~d} G\rangle=\langle\mathrm{d} F, \Pi \Omega \Pi \mathrm{~d} G\rangle \\
& =(\Pi \Omega \Pi)(\mathrm{d} F, \mathrm{~d} G)=\{F, G\}_{\Pi_{D}}
\end{aligned}
$$

is a Poisson bracket. Hence, the property of closeness of Ω is too strong for the definition of a Poisson algebra.

Definition 12. Let Π be a bivector with a kernel spanned by exact 1 -forms. A 2 -form Ω is called weakly presymplectic with respect to Π if it is closed on $\operatorname{Im} \Pi=T \mathcal{N}$, where \mathcal{N} is the foliation given by functions whose differentials span the kernel of Π.

Obviously, if (Π, Ω) is a Poisson pair then Ω is weakly presymplectic with respect to Π. As we will see later, weakly presymplectic forms play an important role in bi-Hamiltonian chains and in the reduction procedure.

3. Presymplectic representation of Gel'fand-Zakharevich chains

Let us consider a bi-Poisson manifold $\left(M, \Pi_{0}, \Pi_{1}\right)$ of $\operatorname{dim} M=m=2 n+r$ where Π_{0}, Π_{1} is a pair of compatible Poisson tensors of rank $2 n$. Moreover, we assume that the Poisson pencil Π_{λ} admits r, polynomial with respect to the pencil parameter λ, Casimir functions of the form

$$
\begin{equation*}
H^{(j)}(\lambda)=\sum_{i=0}^{n_{j}} H_{i}^{(j)} \lambda^{n_{j}-i}, \quad j=1, \ldots, r \tag{24}
\end{equation*}
$$

such that $n_{1}+\cdots+n_{r}=n$ and $H_{i}^{(j)}$ are functionally independent. The collection of n bi-Hamiltonian vector fields

$$
\begin{equation*}
X_{i}^{(j)}=\Pi_{1} \mathrm{~d} H_{i-1}^{(j)}=\Pi_{0} \mathrm{~d} H_{i}^{(j)}, \quad i=1, \ldots, n_{j}, \quad j=1, \ldots, r, \tag{25}
\end{equation*}
$$

constructed from Casimirs of the pencil

$$
\Pi_{\lambda} \mathrm{d} H^{(j)}(\lambda)=0
$$

is called the Gel'fand-Zakharevich system of the bi-Poisson manifold \mathcal{M} [13, 14]. Note that each chain starts from a Casimir of Π_{0} and terminates with a Casimir of Π_{1}. Moreover all $H_{i}^{(j)}$ pairwise commute with respect to both Poisson structures

$$
\begin{gathered}
X_{i}^{(j)}\left(H_{l}^{(k)}\right)=\left\langle\mathrm{d} H_{l}^{(k)}, \Pi_{0} \mathrm{~d} H_{i}^{(j)}\right\rangle=\left\langle\mathrm{d} H_{l}^{(k)}, \Pi_{1} \mathrm{~d} H_{i-1}^{(j)}\right\rangle=0 . \\
\Pi_{\lambda}\left(\mathrm{d} H_{i}^{(j)}, \mathrm{d} H_{l}^{(k)}\right)=0 .
\end{gathered}
$$

3.1. Bi-presymplectic representation of one-Casimir chains

As in this subsection we restrict our considerations to the simplest case of $r=1$, i.e. to the one-Casimir case, we will use the following notation for a single bi-Hamiltonian chain

$$
\begin{equation*}
X_{i}=\Pi_{0} \mathrm{~d} H_{i}=\Pi_{1} \mathrm{~d} H_{i-1}, \quad i=0, \ldots, n+1 \tag{26}
\end{equation*}
$$

The chain starts with a Casimir H_{0} of Π_{0} and terminates with a Casimir H_{n} of Π_{1}.
Let Ω_{0} be a dual to Π_{0} presymplectic form. The kernels of Ω_{0} and Π_{0} are one dimensional: $\operatorname{ker} \Omega_{0}=Z$, $\operatorname{ker} \Pi_{0}=\mathrm{d} H_{0}$ and

$$
L_{Z} \Omega_{0}=0, \quad L_{Z} \Pi_{0}=0
$$

We assume that $\Omega_{0}\left(L_{Z} \Pi_{1}\right) \Omega_{0}=0$, i.e. that Π_{1} is compatible with the $\mathrm{P}-\mathrm{p}$ pair $\left(\Pi_{0}, \Omega_{0}\right)$, so

$$
L_{Z} \Pi_{1}=\left[Z, X_{1}\right] \wedge Z, \quad X_{1}=\Pi_{1} \mathrm{~d} H_{0}
$$

and

$$
\Omega_{1 D}:=\Omega_{0} \Pi_{1} \Omega_{0}
$$

is also presymplectic with $\operatorname{ker} \Omega_{0} \subseteq \operatorname{ker} \Omega_{1 D}$.
Next, we construct the following 2-form:

$$
\Omega_{1}=\Omega_{1 D}+\Omega_{0} X_{1} \wedge \mathrm{~d} H_{0}=\Omega_{1 D}+\mathrm{d} H_{1} \wedge \mathrm{~d} H_{0}
$$

It is obviously a presymplectic form. Moreover, $\left(\Pi_{0}, \Omega_{1}\right)$ is a Poisson pair. Indeed,

$$
\begin{equation*}
\Pi_{0} \Omega_{1} \Pi_{0}=\Pi_{0} \Omega_{1 D} \Pi_{0}+\Pi_{0}\left(\mathrm{~d} H_{1} \wedge \mathrm{~d} H_{0}\right) \Pi_{0}=\Pi_{0} \Omega_{1 D} \Pi_{0}=\Pi_{1 d}=\Pi_{1}-X_{1} \wedge Z \tag{27}
\end{equation*}
$$

which is Poisson according to theorem 8.
Lemma 13. Vector field $Y=X_{n}+Z\left(H_{n}\right) Z$ belongs to $\operatorname{ker} \Omega_{1}$.

Proof.

$$
\begin{aligned}
\Omega_{1} Y & =\left(\Omega_{1 D}-\mathrm{d} H_{0} \wedge \mathrm{~d} H_{1}\right)\left(X_{n}+Z\left(H_{n}\right) Z\right) \\
& =\left(\Omega_{0} \Pi_{1} \Omega_{0}\right) X_{n}-Z\left(H_{n}\right) Z\left(H_{1}\right) \mathrm{d} H_{0}+Z\left(H_{n}\right) \mathrm{d} H_{1} .
\end{aligned}
$$

On the other hand, from (11) and the fact that H_{0} is the only Casimir function of Π_{0}

$$
\begin{aligned}
\left(\Omega_{0} \Pi_{1} \Omega_{0}\right) X_{n} & =\Omega_{0} \Pi_{1}\left(\mathrm{~d} H_{n}-Z\left(H_{n}\right) \mathrm{d} H_{0}\right)=-Z\left(H_{n}\right) \Omega_{0} X_{1} \\
& =-Z\left(H_{n}\right)\left(\mathrm{d} H_{1}-Z\left(H_{1}\right) \mathrm{d} H_{0}\right) \\
& =-Z\left(H_{n}\right) \mathrm{d} H_{1}+Z\left(H_{n}\right) Z\left(H_{1}\right) \mathrm{d} H_{0} .
\end{aligned}
$$

Now we are prepared to formulate the following theorem:
Theorem 14. Bi-presymplectic representation of the bi-Poisson chain (26) takes the form

$$
\begin{equation*}
\beta_{i}=\Omega_{0} Y_{i}=\Omega_{1} Y_{i-1}, \quad i=0, \ldots, n+1 \tag{28}
\end{equation*}
$$

where

$$
Y_{i}=X_{i}+Z\left(H_{i}\right) Z, \quad \beta_{i}=\mathrm{d} H_{i}-Z\left(H_{i}\right) \mathrm{d} H_{0}
$$

The chain starts with a kernel vector field $Y_{0}=Z$ of Ω_{0} and terminates with a kernel vector field $Y_{n} \equiv Y=X_{n}+Z\left(H_{n}\right) Z$ of Ω_{1}.

Proof.

$$
\begin{aligned}
& \Omega_{0} Y_{i}=\Omega_{0} X_{i} \\
& \Omega_{1} Y_{i-1}=\left(\Omega_{0} \Pi_{1} \Omega_{0}-\mathrm{d} H_{0} \wedge \mathrm{~d} H_{1}\right)\left(X_{i-1}+Z\left(H_{i-1}\right) Z\right) \\
& \quad=\left(\Omega_{0} \Pi_{1} \Omega_{0}\right) X_{i-1}-Z\left(H_{i-1}\right) Z\left(H_{1}\right) \mathrm{d} H_{0}+Z\left(H_{i-1}\right) \mathrm{d} H_{1}, \\
& \quad \begin{array}{r}
\left(\Omega_{0} \Pi_{1} \Omega_{0}\right) X_{i-1} \\
\quad=\Omega_{0} \Pi_{1}\left(\mathrm{~d} H_{i-1}-Z\left(H_{i-1}\right) \mathrm{d} H_{0}\right)=\Omega_{0}\left(X_{i}\right)-Z\left(H_{i-1}\right) X_{1} \\
\quad=\Omega_{0} X_{i}-Z\left(H_{i-1}\right) \Omega_{0} X_{1} \\
\quad=\Omega_{0} X_{i}-Z\left(H_{i-1}\right) \mathrm{d} H_{1}+Z\left(H_{i-1}\right) Z\left(H_{1}\right) \mathrm{d} H_{0} .
\end{array}
\end{aligned}
$$

Observe that neither X_{i} nor Y_{i} vector fields are inverse Hamiltonian with respect to Ω_{0} and Ω_{1}. Besides $\left[Y_{i}, Y_{j}\right] \neq 0$. Introducing a presymplectic pencil

$$
\Omega_{\lambda}=\Omega_{1}-\lambda \Omega_{0}
$$

with a kernel vector field

$$
Y=\sum_{i=0}^{n} Y_{i} \lambda^{n-i}
$$

the bi-presymplectic chain (28) takes the form $\Omega_{\lambda} Y=0$. On the other hand, the pairs $\left(\Pi_{0}, \Omega_{0}\right)$ and $\left(\Pi_{0}, \Omega_{1}\right)$ are Poisson pairs, hence Ω_{0} and Ω_{1} define Poisson brackets. The first one is equal to that given by Π_{0} (12) while the second one is equal to that given by $\Pi_{1 d}$ (27). Moreover,

$$
\Omega_{0}\left(X_{i}, X_{j}\right)=\left\{H_{i}, H_{j}\right\}_{\Pi_{0}}=0, \quad \Omega_{1}\left(X_{i}, X_{j}\right)=\left\{H_{i}, H_{j}\right\}_{\Pi_{1 d}}=0
$$

The first bracket is obvious, the second one follows from the relation

$$
\begin{aligned}
\Omega_{1} X_{i} & =\left(\Omega_{1 D}+\mathrm{d} H_{1} \wedge \mathrm{~d} H_{0}\right) X_{i}=\Omega_{0} \Pi_{1} \Omega_{0} X_{i}=\Omega_{0} \Pi_{1}\left(\mathrm{~d} H_{i}\right)-Z\left(H_{i}\right) \mathrm{d} H_{0} \\
& =\Omega_{0} X_{i+1}-Z\left(H_{i}\right) \Omega_{0} X_{1}
\end{aligned}
$$

and the first bracket. Additionally, Poisson tensors Π_{0} and $\Pi_{1 d}$ are compatible as

$$
\left[\Pi_{1 d}, \Pi_{0}\right]_{S}=\left[\Pi_{1}-X_{1} \wedge Z, \Pi_{0}\right]_{S}=X_{1} \wedge\left[Z, \Pi_{0}\right]_{S}-Z \wedge\left[X_{1}, \Pi_{0}\right]_{S}=0
$$

As a consequence $\left(\Pi_{0}, \Omega_{\lambda}\right)$ is a Poisson pair and

$$
\Omega_{\lambda}\left(X_{i}, X_{j}\right)=0 .
$$

3.2. Weakly bi-presymplectic representation of multi-Casimir chains

In this subsection we will show that bi-presymplectic representation is purely an oneCasimir phenomenon. Consider the r-Casimir Gel'fand-Zakharevich chain (24), (25). Let Ω_{0} be a dual to Π_{0} presymplectic form. The kernels of Ω_{0} and Π_{0} are r-dimensional: $\operatorname{ker} \Omega_{0}=S p\left\{Z_{i}\right\}_{i=1, \ldots, r}, \operatorname{ker} \Pi_{0}=S p\left\{\mathrm{~d} H_{0}^{(i)}\right\}_{i=1, \ldots, r}$ and

$$
\begin{equation*}
L_{Z_{i}} \Omega_{0}=0, \quad L_{Z_{i}} \Pi_{0}=0, \quad i=1, \ldots, r \tag{29}
\end{equation*}
$$

We assume that $\Omega_{0}\left(L_{Z_{i}} \Pi_{1}\right) \Omega_{0}=0$, i.e. that Π_{1} is compatible with the $\mathrm{P}-\mathrm{p}$ pair $\left(\Pi_{0}, \Omega_{0}\right)$, so from involutivity of $H_{k}^{(i)}$ relation (16) takes the form

$$
L_{Z_{i}} \Pi_{1}=\sum_{k}\left[Z_{i}, X_{1}^{(k)}\right] \wedge Z_{k}, \quad X_{1}^{(k)}=\Pi_{1} \mathrm{~d} H_{0}^{(k)}
$$

and

$$
\Omega_{1 D}:=\Omega_{0} \Pi_{1} \Omega_{0}
$$

is also presymplectic with $\operatorname{ker} \Omega_{0} \subseteq \operatorname{ker} \Omega_{1 D}$.
Next, we construct the following 2-forms

$$
\bar{\Omega}_{1}=\Omega_{1 D}+\sum_{j=1}^{r} \Omega_{0} X_{1}^{(j)} \wedge \mathrm{d} H_{0}^{(j)}, \quad \Omega_{1}=\Omega_{1 D}+\sum_{j=1}^{r} \mathrm{~d} H_{1}^{(j)} \wedge \mathrm{d} H_{0}^{(j)}
$$

related with each other as follows

$$
\Omega_{1}=\bar{\Omega}_{1}+\frac{1}{2} \sum_{k, l} A_{k l} \mathrm{~d} H_{0}^{(k)} \wedge \mathrm{d} H_{0}^{(l)}, \quad A_{k l}=Z_{k}\left(H_{1}^{(l)}\right)-Z_{l}\left(H_{1}^{(k)}\right)
$$

Obviously Ω_{1} is presymplectic and together with Π_{0} forms a Poisson pair as

$$
\Pi_{0} \Omega_{1} \Pi_{0}=\Pi_{0} \Omega_{1 D} \Pi_{0}=\Pi_{0} \Omega_{0} \Pi_{1} \Omega_{0} \Pi_{0}=\Pi_{1 d}=\Pi_{1}-\sum_{i} X_{1}^{(i)} \wedge Z_{i}
$$

is Poisson. It is also clear that $\bar{\Omega}_{1}$ is not closed as

$$
\mathrm{d} \bar{\Omega}_{1}=-\frac{1}{2} \sum_{k, l} \mathrm{~d} A_{k l} \wedge \mathrm{~d} H_{0}^{(k)} \wedge \mathrm{d} H_{0}^{(l)},
$$

but is weakly presymplectic with respect to Π_{0}

$$
\mathrm{d} \bar{\Omega}_{1}\left(\Pi_{0} \alpha_{1}, \Pi_{0} \alpha_{2}, \Pi_{0} \alpha_{3}\right)=0, \quad \forall \alpha_{1}, \alpha_{2}, \alpha_{3} \in T^{*} \mathcal{M}
$$

Moreover, $\left(\Pi_{0}, \bar{\Omega}_{1}\right)$ is a Poisson pair equivalent to the $\left(\Pi_{0}, \Omega_{1}\right)$ one as $\Pi_{0} \bar{\Omega}_{1} \Pi_{0}=\Pi_{0} \Omega_{1} \Pi_{0}=$ $\Pi_{1 d}$.

Theorem 15. Multi-Casimir bi-Poisson chains (25) have weakly bi-presymplectic representation

$$
\begin{equation*}
\beta_{i}^{(j)}=\Omega_{0} Y_{i}^{(j)}=\bar{\Omega}_{1} Y_{i-1}^{(j)}, \quad j=1, \ldots, r, \quad i=0, \ldots, n_{j}+1, \tag{30}
\end{equation*}
$$

where

$$
Y_{i}^{(j)}=X_{i}^{(j)}+\sum_{k=1}^{r} Z_{k}\left(H_{i}^{(j)}\right) Z_{k}, \quad \beta_{i}^{(j)}=\mathrm{d} H_{i}^{(j)}-\sum_{k=1}^{r} Z_{k}\left(H_{i}^{(j)}\right) \mathrm{d} H_{0}^{(k)}
$$

The j th chain starts with a kernel vector field $Y_{0}^{(j)}=Z_{j}$ of Ω_{0} and terminates with a kernel vector field $Y_{n_{j}}^{(j)}=X_{n_{j}}^{(j)}+\sum_{k=1}^{m} Z_{k}\left(H_{n_{j}}^{(j)}\right) Z_{k}$ of $\bar{\Omega}_{1}$.

Proof. We have

$$
\Omega_{0} Y_{i}^{(j)}=\Omega_{0} X_{i}^{(j)}
$$

On the other hand,

$$
\begin{aligned}
\bar{\Omega}_{1} Y_{i-1}^{(j)}= & \left(\Omega_{0} \Pi_{1} \Omega_{0}+\sum_{l} \Omega_{0} X_{1}^{(l)} \wedge \mathrm{d} H_{0}^{(l)}\right)\left(X_{i-1}^{(j)}+\sum_{k} Z_{k}\left(H_{i-1}^{(j)}\right) Z_{k}\right) \\
= & \Omega_{0} \Pi_{1} \Omega_{0} X_{i-1}^{(j)}+\left(\sum_{l} \Omega_{0} X_{1}^{(l)} \wedge \mathrm{d} H_{0}^{(l)}\right) X_{i-1}^{(j)} \\
& +\sum_{l, k} Z_{k}\left(H_{i-1}^{(j)}\right)\left(\Omega_{0} X_{1}^{(l)} \wedge \mathrm{d} H_{0}^{(l)}\right) Z_{k}
\end{aligned}
$$

Using decomposition (11) and bi-Hamiltonian chains (25) one finds
$\Omega_{0} \Pi_{1} \Omega_{0} X_{i-1}^{(j)}=\Omega_{0} X_{i}^{(j)}-\sum_{k} Z_{k}\left(H_{i-1}^{(j)}\right) \mathrm{d} H_{1}^{(k)}+\sum_{l, k} Z_{k}\left(H_{i-1}^{(j)}\right) Z_{l}\left(H_{1}^{(k)}\right) \mathrm{d} H_{0}^{(l)}$,
$\sum_{l, k} Z_{k}\left(H_{i-1}^{(j)}\right)\left(\Omega_{0} X_{1}^{(l)} \wedge \mathrm{d} H_{0}^{(l)}\right) Z_{k}=\sum_{k} Z_{k}\left(H_{i-1}^{(j)}\right) \mathrm{d} H_{1}^{(k)}-\sum_{j, k} Z_{k}\left(H_{i-1}^{(j)}\right) Z_{l}\left(H_{1}^{(k)}\right) \mathrm{d} H_{0}^{(l)}$,
$\left(\sum_{l} \Omega_{0} X_{1}^{(l)} \wedge \mathrm{d} H_{0}^{(l)}\right) X_{i-1}^{(j)}=-\sum_{l} \Omega_{0}\left(X_{1}^{(l)}, X_{i-1}^{(j)}\right) \mathrm{d} H_{0}^{(l)}=0$.
The last equality follows from the fact that $\Omega_{0}\left(X_{1}^{(l)}, X_{i-1}^{(j)}\right)=\Pi_{0}\left(\mathrm{~d} H_{1}^{(l)}, \mathrm{d} H_{i-1}^{(j)}\right)=0$. Hence

$$
\bar{\Omega}_{1} Y_{i-1}^{(j)}=\Omega_{0} X_{i}^{(j)}
$$

Introducing a weakly presymplectic pencil

$$
\bar{\Omega}_{\lambda}=\bar{\Omega}_{1}-\lambda \Omega_{0}
$$

with respect to Π_{0}, with kernel vector fields

$$
Y^{(j)}=\sum_{i=0}^{n_{j}} Y_{i}^{(j)} \lambda^{n_{j}-i}, \quad j=1, \ldots, r
$$

the weakly bi-presymplectic chains (30) take the form $\bar{\Omega}_{\lambda} Y^{(j)}=0$. On the other hand, as we mentioned before, the pairs $\left(\Pi_{0}, \Omega_{0}\right)$ and ($\left.\Pi_{0}, \bar{\Omega}_{1}\right)$ are Poisson pairs, hence Ω_{0} and $\bar{\Omega}_{1}$ define Poisson brackets. The first one is equal to that given by Π_{0} while the second one is equal to that given by $\Pi_{1 d}$. Moreover,
$\Omega_{0}\left(X_{i}^{(k)}, X_{j}^{(l)}\right)=\left\{H_{i}^{(k)}, H_{j}^{(l)}\right\}_{\Pi_{0}}=0, \quad \Omega_{1}\left(X_{i}^{(k)}, X_{j}^{(l)}\right)=\left\{H_{i}^{(k)}, H_{j}^{(l)}\right\}_{\Pi_{l d}}=0$.
The first bracket is obvious; the second one follows from the relation

$$
\begin{aligned}
\Omega_{1} X_{i}^{(k)} & =\left(\Omega_{1 D}+\sum_{r} \mathrm{~d} H_{1}^{(r)} \wedge \mathrm{d} H_{0}^{(r)}\right) X_{i}^{(k)}=\Omega_{0} \Pi_{1} \Omega_{0} X_{i}^{(k)} \\
& =\Omega_{0} \Pi_{1}\left(\mathrm{~d} H_{i}^{(k)}-\sum_{r} Z_{r}\left(H_{i}^{(k)}\right) \mathrm{d} H_{0}^{(r)}\right) \\
& =\Omega_{0} X_{i+1}^{(k)}-\sum_{r} Z_{r}\left(H_{i}^{(k)}\right) \Omega_{0} X_{1}^{(r)}
\end{aligned}
$$

and the first bracket. Additionally, Poisson tensors Π_{0} and $\Pi_{1 d}$ are compatible as

$$
\begin{aligned}
{\left[\Pi_{1 d}, \Pi_{0}\right]_{S} } & =\left[\Pi_{1}-\sum_{i} X_{1}^{(i)} \wedge Z_{i}, \Pi_{0}\right]_{S} \\
& =\sum_{i}\left(X_{1}^{(i)} \wedge\left[Z_{i}, \Pi_{0}\right]_{S}-Z_{i} \wedge\left[X_{1}^{(i)}, \Pi_{0}\right]_{S}\right) \\
& =\sum_{i}\left(X_{1}^{(i)} \wedge L_{Z_{i}} \Pi_{0}-Z_{i} \wedge L_{X_{1}^{(i)}} \Pi_{0}\right) \\
& =0
\end{aligned}
$$

As a consequence, $\left(\Pi_{0}, \bar{\Omega}_{\lambda}\right)$ is a Poisson pair and

$$
\bar{\Omega}_{\lambda}\left(X_{i}, X_{j}\right)=0 .
$$

Now, let us consider the presymplectic pencil

$$
\Omega_{\lambda}=\Omega_{1}-\lambda \Omega_{0}
$$

As $\left(\Pi_{0}, \Omega_{1}\right)$ is a Poisson pair equivalent to the Poisson pair $\left(\Pi_{0}, \bar{\Omega}_{1}\right)$, then

$$
\Omega_{\lambda}\left(X_{i}, X_{j}\right)=0
$$

Moreover, chains (30) take the form

$$
\beta_{i}^{(j)}=\Omega_{0} Y_{i}^{(j)}=\Omega_{1} Y_{i-1}^{(j)}-\sum_{k} B_{i-1, k}^{(j)} \mathrm{d} H_{0}^{(k)}, \quad B_{i, k}^{(j)}=\sum_{l} A_{k l} Z_{l}\left(H_{i}^{(j)}\right)
$$

where $j=1, \ldots, r, i=0, \ldots, n_{j}+1$.

4. Reduction procedure for Gel'fand-Zakharevich chains

Let us consider a $(2 n+r)$-dimensional manifold \mathcal{M} and $2 n$-dimensional submanifold \mathcal{N} of \mathcal{M}. Then, let us fix an integrable distribution \mathcal{Z} of constant dimension r that is transversal to \mathcal{N}. As mentioned in section 2 , such a case is realized by an appropriate dual $\mathrm{P}-\mathrm{p}$ pair defined on \mathcal{M}. Indeed, let $\left(\Pi_{0}, \Omega_{0}\right)$ be a dual P-p pair on \mathcal{M} with ker $\Omega_{0}=\mathcal{Z}=\operatorname{Sp}\left\{Z_{i}\right\}$ and $\operatorname{ker} \Pi_{0}=\mathcal{Z}^{*}=S p\left\{\mathrm{~d} c_{i}\right\}, i=1, \ldots, r$ where obviously $Z_{i}\left(c_{j}\right)=\delta_{i j}$ and $\left[Z_{i}, Z_{j}\right]=0$. Then, \mathcal{N} is a fixed symplectic leaf of Π and \mathcal{Z} consists of vector fields from ker Ω_{0} evaluated on \mathcal{N}. An appropriate decomposition of tangent and cotangent bundle of \mathcal{M} is given by (9).

Definition 16. A function $F: \mathcal{M} \rightarrow \mathbb{R}$ is called invariant with respect to distribution \mathcal{Z} if

$$
L_{Z_{i}} F=Z_{i}(F)=0, \quad \forall Z_{i} \in \mathcal{Z} .
$$

The set of such functions will be denoted by \mathcal{A}.
Definition 17. The Poisson tensor Π is called invariant with respect to the distribution \mathcal{Z} if functions that are invariant along \mathcal{Z} form a Poisson subalgebra with respect to Π, that is

$$
\begin{equation*}
L_{Z_{i}} \Pi(\mathrm{~d} F, \mathrm{~d} G)=0, \quad Z_{i}(F)=Z_{i}(G)=0 \tag{31}
\end{equation*}
$$

We will denote this subalgebra by $\mathcal{A}(\Pi)$.
Note that Π_{0} is obviously \mathcal{Z}-invariant as $L_{Z_{i}} \Pi_{0}=0$, hence $\mathcal{A}\left(\Pi_{0}\right)$ is also a Poisson subalgebra.

Lemma 18. If Poisson bivector Π is compatible with a presymplectic form Ω_{0}, then it is invariant with respect to the distribution $\mathcal{Z}=\operatorname{ker} \Omega_{0}$.

Proof. Assume $Z_{i}(F)=Z_{i}(G)=0$ for all i. We have to show that condition (31) is fulfilled. But due to theorem 8 it follows that

$$
\begin{aligned}
L_{Z_{l}} \Pi(\mathrm{~d} F, \mathrm{~d} G)= & \left(L_{Z_{l}} \Pi\right)(\mathrm{d} F, \mathrm{~d} G)=\left\langle\mathrm{d} F,\left(L_{Z_{l}} \Pi\right) \mathrm{d} G\right\rangle \\
= & \left\langle\mathrm{d} F,\left(\sum_{i}\left[Z_{l}, X_{i}\right] \wedge Z_{i}-\frac{1}{2} \sum_{i, j} Z_{l}\left(c_{i j}\right) Z_{i} \wedge Z_{j}\right) \mathrm{d} G\right\rangle \\
= & \sum_{i}\left(Z_{i}(G)\left[Z_{l}, X_{i}\right](F)-Z_{i}(F)\left[Z_{l}, X_{i}\right](G)\right) \\
& -\frac{1}{2} \sum_{i, j} Z_{l}\left(c_{i j}\right)\left[Z_{j}(G) Z_{i}(F)-Z_{j}(F) Z_{i}(G)\right] \\
= & 0 .
\end{aligned}
$$

The invariance of Poisson tensors given in the form (14) was proved for the first time by Vaisman [15].

As a consequence we conclude that an arbitrary Poisson bivector Π, compatible with a dual P-p pair (Π_{0}, Ω_{0}), is reducible onto foliation given by Casimirs of Π_{0} along the distribution given by ker Ω_{0}. Here we propose a simple constructive method of deriving the reduced operator.

Lemma 19. Let Π be a Poisson bivector compatible with a dual $P-p$ pair $\left(\Pi_{0}, \Omega_{0}\right)$ and π a reduction of Π onto a symplectic leaf \mathcal{N}_{ν} of Π_{0} along the transversal distribution $\mathcal{Z}=\operatorname{ker} \Omega_{0}$. Then, π can be constructed by a restriction of

$$
\Pi_{d}=\Pi_{0} \Omega_{0} \Pi \Omega_{0} \Pi_{0}=\Pi-\sum_{i} X_{i} \wedge Z_{i}+\frac{1}{2} \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}
$$

to \mathcal{N}_{v}

$$
\begin{equation*}
\pi=\left.\Pi_{d}\right|_{\mathcal{N}_{v}} . \tag{32}
\end{equation*}
$$

Proof. From the relation (14) and the fact that for $F, G \in \mathcal{A}$

$$
\left\langle\mathrm{d} F,\left(-\sum_{i} X_{i} \wedge Z_{i}+\frac{1}{2} \sum_{i, j} c_{i j} Z_{i} \wedge Z_{j}\right) \mathrm{d} G\right\rangle=0
$$

the Poisson operator Π and its deformation Π_{d} both act in the same way on the set \mathcal{A}, so that both can be used to define the same reduced operator π on \mathcal{N}_{v}. But as the image of Π_{d} is tangent to \mathcal{N}_{ν}, what follows from the fact that $\operatorname{ker} \Pi_{0} \subset \operatorname{ker} \Pi_{d}$, and Π_{d} is Poisson, then the projection of Π_{d} onto \mathcal{N}_{v} means simply its restriction to \mathcal{N}_{ν}. Obviously, if ker $\Pi_{d}=\operatorname{ker} \Pi_{0}$, then (32) means the restriction of Π_{d} to its symplectic leaf \mathcal{N}_{v}.

Now we pass to the reduction of bi-Hamiltonian chains in Poisson (25) and presymplectic (30) representations onto symplectic foliation of Π_{0}. Let us denote the projections of Π_{0}, Π_{1} onto \mathcal{N} along \mathcal{Z} by π_{0}, π_{1} and restrictions of $\left.\left(H_{1}^{(1)}, \ldots, H_{n_{r}}^{(r)}\right)\right|_{\mathcal{N}}$ to \mathcal{N} by $\left(h_{1}^{(1)}, \ldots, h_{n_{r}}^{(r)}\right)$.
Proposition 20. The bi-Poisson chain (25), when reduced to \mathcal{N} takes the form
$\pi_{1} \mathrm{~d} h_{i}^{(j)}=\pi_{0} \mathrm{~d} h_{i+1}^{(j)}-\sum_{k=1}^{r} \alpha_{k i}^{(j)} \pi_{0} \mathrm{~d} h_{1}^{(k)}, \quad j=1, \ldots, r, \quad i=1, \ldots, n_{j}$,
where $\alpha_{k i}^{(j)}=\left.Z_{k}\left(H_{i}^{(j)}\right)\right|_{\mathcal{N}}$.

Proof.

$$
\begin{aligned}
\pi_{1} \mathrm{~d} h_{i}^{(j)} & =\left.\left.\Pi_{1 d}\right|_{\mathcal{N}} \mathrm{d} H_{i}^{(j)}\right|_{\mathcal{N}}=\left.\left(\Pi_{1 d} \mathrm{~d} H_{i}^{(j)}\right)\right|_{\mathcal{N}} \\
& =\left.\left(\Pi_{1} \mathrm{~d} H_{i}^{(j)}\right)\right|_{\mathcal{N}}-\left.\sum_{k=1}^{r}\left(Z_{k}\left(H_{i}^{(j)}\right) X_{1}^{(k)}\right)\right|_{\mathcal{N}} \\
& =\left.\left(\Pi_{0} \mathrm{~d} H_{i+1}^{(j)}\right)\right|_{\mathcal{N}}-\left.\sum_{k=1}^{r}\left(Z_{k}\left(H_{i}^{(j)}\right) \Pi_{0} \mathrm{~d} H_{1}^{(k)}\right)\right|_{\mathcal{N}} \\
& =\left.\left.\Pi_{0}\right|_{\mathcal{N}} \mathrm{d} H_{i+1}^{(j)}\right|_{\mathcal{N}}-\left.\left.\left.\sum_{k=1}^{r} Z_{k}\left(H_{i}^{(j)}\right)\right|_{\mathcal{N}} \Pi_{0}\right|_{\mathcal{N}} \mathrm{d} H_{1}^{(k)}\right|_{\mathcal{N}} \\
& =\pi_{0} \mathrm{~d} h_{i+1}^{(j)}-\left.\sum_{k=1}^{r} Z_{k}\left(H_{i}^{(j)}\right)\right|_{\mathcal{N}} \pi_{0} \mathrm{~d} h_{1}^{(k)}
\end{aligned}
$$

The second and fifth equalities are valid as in coordinates

$$
\begin{equation*}
\left(x^{i}, H_{0}^{(j)}\right), \quad i=1, \ldots, 2 n, \quad j=1, \ldots, r \tag{34}
\end{equation*}
$$

on \mathcal{M}, the last r rows and columns of Π_{0} and $\Pi_{1 d}$ contain zeros only. Obviously we have

$$
\pi_{0}\left(\mathrm{~d} h_{i}^{(j)}, \mathrm{d} h_{k}^{(l)}\right)=\pi_{1}\left(\mathrm{~d} h_{i}^{(j)}, \mathrm{d} h_{k}^{(l)}\right)=0
$$

which follows from the construction of π_{0} and π_{1}.
Before we pass to the reduction of presymplectic representation (30), observe that restrictions $\left.\Omega_{0}\right|_{\mathcal{N}}=\omega_{0},\left.\Omega_{1}\right|_{\mathcal{N}}=\left.\bar{\Omega}_{1}\right|_{\mathcal{N}}=\omega_{1}$ are closed 2-forms. Moreover, $\pi_{0} \mathrm{~d} h_{i}^{(j)}:=$ $K_{i}^{(j)}=\left.X_{i}^{(j)}\right|_{\mathcal{N}}$, where $\left.\right|_{\mathcal{N}}$ means as usually a restriction, as

$$
\left.X_{i}^{(j)}\right|_{\mathcal{N}}=\left.\left(\Pi_{0} \mathrm{~d} H_{i}^{(j)}\right)\right|_{\mathcal{N}}=\left.\left.\Pi_{0}\right|_{\mathcal{N}} \mathrm{d} H_{i}^{(j)}\right|_{\mathcal{N}}=\pi_{0} \mathrm{~d} h_{i}^{(j)}
$$

Proposition 21. When reduced to \mathcal{N}, the weakly bi-presymplectic chain (25) takes the form
$\omega_{1} K_{i}^{(j)}=\omega_{0} K_{i+1}^{(j)}-\sum_{k} \alpha_{k i}^{(j)} \omega_{0} K_{1}^{(j)}, \quad j=1, \ldots, r, \quad i=1, \ldots, n_{j}$.

Proof.

$$
\begin{aligned}
\omega_{1} K_{i}^{(j)} & =\left.\left.\bar{\Omega}_{1}\right|_{\mathcal{N}} X_{i}^{(j)}\right|_{\mathcal{N}}=\left.\left(\bar{\Omega}_{1} X_{i}^{(j)}\right)\right|_{\mathcal{N}}=\left.\left(\bar{\Omega}_{1}\left(Y_{i}^{(j)}-\sum_{k} Z_{k}\left(H_{i}^{(j)}\right) Z_{k}\right)\right)\right|_{\mathcal{N}} \\
& =\left.\left(\bar{\Omega}_{1} Y_{i}^{(j)}\right)\right|_{\mathcal{N}}-\left.\sum_{k}\left(Z_{k}\left(H_{i}^{(j)}\right) \beta_{1}^{(j)}\right)\right|_{\mathcal{N}} \\
& =\left.\left(\Omega_{0} Y_{i+1}^{(j)}\right)\right|_{\mathcal{N}}-\left.\sum_{k}\left(Z_{k}\left(H_{i}^{(j)}\right) \Omega_{0} Y_{1}^{(k)}\right)\right|_{\mathcal{N}} \\
& =\left.\left(\Omega_{0} X_{i+1}^{(j)}\right)\right|_{\mathcal{N}}-\left.\sum_{k}\left(Z_{k}\left(H_{i}^{(j)}\right) \Omega_{0} X_{1}^{(k)}\right)\right|_{\mathcal{N}} \\
& =\left.\left.\Omega_{0}\right|_{\mathcal{N}} X_{i+1}^{(j)}\right|_{\mathcal{N}}-\left.\left.\left.\sum_{k} Z_{k}\left(H_{i}^{(j)}\right)\right|_{\mathcal{N}} \Omega_{0}\right|_{\mathcal{N}} X_{1}^{(k)}\right|_{\mathcal{N}} \\
& =\omega_{0} K_{i+1}^{(j)}-\sum_{k} \alpha_{k i}^{(j)} \omega_{0} K_{1}^{(j)}
\end{aligned}
$$

The second and seventh equalities are valid as in the coordinates (34) vector fields $X_{i}^{(j)}$ have the last r components equal to zero.

Note that

$$
\begin{aligned}
\omega_{1} & =\left.\bar{\Omega}_{1}\right|_{\mathcal{N}}=\left.\Omega_{1 D}\right|_{\mathcal{N}}=\left.\left(\Omega_{0} \Pi_{1} \Omega_{0}\right)\right|_{\mathcal{N}}=\left.\left(\Omega_{0} \Pi_{1 d} \Omega_{0}\right)\right|_{\mathcal{N}} \\
& =\left.\left.\left.\Omega_{0}\right|_{\mathcal{N}} \Pi_{1 d}\right|_{\mathcal{N}} \Omega_{0}\right|_{\mathcal{N}}=\omega_{0} \pi_{1} \omega_{0}
\end{aligned}
$$

As ω_{1} is closed then $\left(\pi_{1}, \omega_{0}\right)$ is a compatible pair and $N=\pi_{1} \omega_{0}$ is a recursion operator. Moreover $\pi_{1}=N \pi_{0}$ hence π_{0} and π_{1} are compatible. Now we immediately find that reduced chains (33) and (35) are equivalent. As $K_{i}^{(j)}=\pi_{0} \mathrm{~d} h_{i}^{(j)}$, hence (35) takes the form
$N^{*} \mathrm{~d} h_{i}^{(j)}=\mathrm{d} h_{i+1}^{(j)}-\sum_{k} \alpha_{k i}^{(j)} \mathrm{d} h_{1}^{(j)}, \quad j=1, \ldots, r, \quad i=1, \ldots, n_{j}$,
where $N^{*}=\omega_{0} \pi_{1}$ is a recursion operator for 1-forms. On the other hand, multiplying (33) from the left by ω_{0} we arrive at (36) again. Moreover,
$\omega_{0}\left(K_{i}^{(j)}, K_{l}^{(r)}\right)=\pi_{0}\left(\mathrm{~d} h_{i}^{(j)}, \mathrm{d} h_{k}^{(l)}\right)=0, \quad \omega_{1}\left(K_{i}^{(j)}, K_{l}^{(r)}\right)=\pi_{1}\left(\mathrm{~d} h_{i}^{(j)}, \mathrm{d} h_{k}^{(l)}\right)=0$.
As a consequence, the distribution tangent to the foliation of \mathcal{N} defined by $\left(h_{1}^{(1)}, \ldots, h_{n_{r}}^{(r)}\right)$ is bi-Lagrangian and the n-tuple $\left(h_{1}^{(1)}, \ldots, h_{n_{r}}^{(r)}\right)$ of functionally independent Hamiltonians is separable [10]. Separated coordinates are eigenvalues of the recursion operator N and canonically conjugated momenta that put the recursion operator in the diagonal form.

We conclude this section with a statement, that the existence of weakly bi-presymplectic representation of bi-Poisson chains is a sufficient condition for the separability of related Hamiltonian systems.

5. Example

Let us illustrate our previous considerations with a simple nontrivial example of the integrable case of the Henon-Heiles equations

$$
\begin{equation*}
\left(q^{1}\right)_{t t}=-3\left(q^{1}\right)^{2}-\frac{1}{2}\left(q^{2}\right)^{2}+c, \quad\left(q^{2}\right)_{t t}=-q^{1} q^{2} \tag{37}
\end{equation*}
$$

The system (37) can be put into a canonical Hamiltonian form with the Hamiltonian function given by

$$
H_{1}=\frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2}+\left(q^{1}\right)^{3}+\frac{1}{2} q^{1}\left(q^{2}\right)^{2}-c q^{1}
$$

where $p_{1}=q_{t}^{1}, p_{2}=q_{t}^{2}$. The second constant of motion is

$$
H_{2}=\frac{1}{2} q^{2} p_{1} p_{2}-\frac{1}{2} q^{1} p_{2}^{2}+\frac{1}{16}\left(q^{2}\right)^{4}+\frac{1}{4}\left(q^{1}\right)^{2}\left(q^{2}\right)^{2}-\frac{1}{4} c\left(q^{2}\right)^{2} .
$$

The bi-Hamiltonian chain on $\mathcal{M}=S p\left(q^{1}, q^{2}, p_{1}, p_{2}, c\right)$ is of the following form:

$$
\begin{aligned}
\Pi_{0} \mathrm{~d} H_{0} & =0 \\
\Pi_{0} \mathrm{~d} H_{1} & =X_{1}
\end{aligned}=\Pi_{1} \mathrm{~d} H_{0}, ~ \begin{aligned}
\Pi_{0} \mathrm{~d} H_{2} & =X_{2}
\end{aligned}=\Pi_{1} \mathrm{~d} H_{1},
$$

where $H_{0}=c$ and the compatible Poisson bivectors are

$$
\Pi_{0}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

$\Pi_{1}=\left(\begin{array}{ccccc}0 & 0 & q^{1} & \frac{1}{2} q^{2} & p_{1} \\ 0 & 0 & \frac{1}{2} q^{2} & 0 & p_{2} \\ -q^{1} & -\frac{1}{2} q^{2} & 0 & \frac{1}{2} p_{2} & -3\left(q^{1}\right)^{2}-\frac{1}{2}\left(q^{2}\right)^{2}+c \\ -\frac{1}{2} q^{2} & 0 & -\frac{1}{2} p_{2} & 0 & -q^{1} q^{2} \\ -p_{1} & -p_{2} & 3\left(q^{1}\right)^{2}+\frac{1}{2}\left(q^{2}\right)^{2}-c & q^{1} q^{2} & 0\end{array}\right)$.
Now, dual to the canonical Poisson tensor Π_{0} is a canonical presymplectic form

$$
\Omega_{0}=\left(\begin{array}{ccccc}
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with a kernel vector

$$
Z=(0,0,0,0,1)^{T} .
$$

As evidently $\Omega_{0}\left(L_{Z} \Pi_{1}\right) \Omega_{0}=0$, then Π_{1} is compatible with the pair $\left(\Pi_{0}, \Omega_{0}\right)$, so the second presymplectic form is

$$
\begin{aligned}
\Omega_{1} & =\Omega_{1 D}+\mathrm{d} H_{1} \wedge \mathrm{~d} H_{0} \\
& =\left(\begin{array}{ccccc}
0 & -\frac{1}{2} p_{2} & -q^{1} & -\frac{1}{2} q^{2} & 3\left(q^{1}\right)^{2}+\frac{1}{2}\left(q^{2}\right)^{2}-c \\
\frac{1}{2} p_{2} & 0 & -\frac{1}{2} q^{2} & 0 & q^{1} q^{2} \\
q^{1} & \frac{1}{2} q^{2} & 0 & 0 & p_{1} \\
\frac{1}{2} q^{2} & 0 & 0 & 0 & p_{2} \\
-3\left(q^{1}\right)^{2}-\frac{1}{2}\left(q^{2}\right)^{2}+c & -q^{1} q^{2} & -p_{1} & -p_{2} & 0
\end{array}\right) .
\end{aligned}
$$

Hence, the bi-presymplectic representation of the Henon-Heiles chain takes the form

$$
\begin{aligned}
& \Omega_{0} Y_{0}=0 \\
& \Omega_{0} Y_{1}=\beta_{1}=\Omega_{1} Y_{0} \\
& \Omega_{0} Y_{2}=\beta_{2}=\Omega_{1} Y_{1} \\
& 0=\Omega_{1} Y_{2}
\end{aligned}
$$

where vector fields Y_{i} are

$$
\begin{aligned}
Y_{0}= & Z=(0,0,0,0,1)^{T} \\
Y_{1}= & X_{1}+Z\left(H_{1}\right) Z=\left(p_{1}, p_{2},-3\left(q^{1}\right)^{2}-\frac{1}{2}\left(q^{2}\right)^{2}+c,-q^{1} q^{2},-q^{1}\right)^{T} \\
Y_{2}= & X_{1}+Z\left(H_{2}\right) Z=\left(\frac{1}{2} q^{2} p_{2}, \frac{1}{2} q^{2} p_{1}-q^{1} p_{1}, \frac{1}{2} p_{2}^{2}-\frac{1}{2} q^{1}\left(q^{2}\right)^{2},\right. \\
& \left.-\frac{1}{2} p_{1} p_{2}-\frac{1}{4}\left(q^{2}\right)^{3}-\frac{1}{2}\left(q^{1}\right)^{2} q^{2}+\frac{1}{2} c q^{2},-\frac{1}{4}\left(q^{2}\right)^{2}\right)^{T} .
\end{aligned}
$$

The chain starts with a kernel vector field Y_{0} of Ω_{0} and terminates with a kernel vector field Y_{2} of Ω_{1}. The restriction of $\Pi_{0}, \Pi_{1 d}, \Omega_{0}$ and Ω_{1} to $\mathcal{N}=S p\left(q^{1}, q^{2}, p_{1}, p_{2}\right)$ are

$$
\pi_{0}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad \omega_{0}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

$\pi_{1}=\left(\begin{array}{cccc}0 & 0 & q^{1} & \frac{1}{2} q^{2} \\ 0 & 0 & \frac{1}{2} q^{2} & 0 \\ -q^{1} & -\frac{1}{2} q^{2} & 0 & \frac{1}{2} p_{2} \\ -\frac{1}{2} q^{2} & 0 & -\frac{1}{2} p_{2} & 0\end{array}\right), \quad \omega_{1}=\left(\begin{array}{cccc}0 & -\frac{1}{2} p_{2} & -q^{1} & -\frac{1}{2} q^{2} \\ \frac{1}{2} p_{2} & 0 & -\frac{1}{2} q^{2} & 0 \\ q^{1} & \frac{1}{2} q^{2} & 0 & 0 \\ \frac{1}{2} q^{2} & 0 & 0 & 0\end{array}\right)$
with the recursion operator N of the form

$$
N=\pi_{1} \omega_{0}=\left(\begin{array}{cccc}
q^{1} & \frac{1}{2} q^{2} & 0 & 0 \\
\frac{1}{2} q^{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} p_{2} & q^{1} & \frac{1}{2} q^{2} \\
-\frac{1}{2} p_{2} & 0 & \frac{1}{2} q^{2} & 0
\end{array}\right)
$$

and $N^{*}=N^{T}$.

Acknowledgment

The author was supported partially by KBN research grant no 1 P03B 11127.

References

[1] Błaszak M 1998 Multi-Hamiltonian Theory of Dynamical Systems (Texts and Monographs in Physics) (Berlin: Springer)
[2] Błaszak M 1998 On separability of bi-Hamiltonian chain with degenerated Poisson structures J. Math. Phys. 39 3213
[3] Błaszak M 1999 Theory of separability of multi-Hamiltonian chains J. Math. Phys. 405725
[4] Falqui G, Magri F and Tondo G 2000 Reduction of bihamiltonian systems and separation of variables: an example from the Boussinesq hierarchy Theor. Math. Phys. 122176
[5] Błaszak M 2000 Degenerate Poisson pencils on curves: new separability theory J. Nonlinear Math. Phys. 7213
[6] Falqui G, Magri F and Pedroni M 2000 Bihamiltonian geometry and separation of variables for Toda lattices J. Nonlinear Math. Phys. 8118
[7] Ibort A, Magri F and Marmo G 2000 Bihamiltonian structures and Stäckel separability J. Geom. Phys. 33210
[8] Błaszak M 2001 From bi-Hamiltonian geometry to separation of variables: stationary Harry-Dym and the KdV dressing chain J. Nonlinear Math. Phys. 91
[9] Marciniak K and Błaszak M 2002 Separation of variables in quasi-potential systems of bi-cofactor form J. Phys. A: Math. Gen. 352947
[10] Falqui G and Pedroni M 2003 Separation of variables for bi-Hamiltonian systems Math. Phys. Anal. Geom. 6 139
[11] Dubrovin B A, Giordano M, Marmo G and Simoni A 1993 Poisson brackets on presymplectic manifolds Int. J. Mod. Phys. 83747
[12] Błaszak M and Marciniak K 2004 Dirac reduction of dual Poisson-presymplectic pairs J. Phys. A: Math. Gen. 37
[13] Gel'fand I M and Zakharevich I 1993 On the local geometry of a bi-Hamiltonian structure The Gel'fand Mathematical Seminars 1990-1992 ed L Corwin et al (Boston, MA: Birkhauser) p 51
[14] Gel'fand I M and Zakharevich I 2000 Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures Sel. Math. 6131
[15] Vaisman I 1994 Lectures on the Geometry of Poisson Manifolds (Progress in Math.) (Basle: Birkhäuser)

